Актин и миозин выполняют транспортную функцию. Сократительные белки: функции, примеры

Вопрос 31. Микрофиламенты и внутриклеточные движения

Теория происхождения митохондрий и пластид

Митохондрии и пластиды занимают в эукариотической клетке совершенно особое положение. Они имеют собственную генетическую систему, размножаются относительно независимо от деления всей клетки и ядра и отграничены от остальной протоплазмы двойной мембраной.

Согласно гипотезе эндосимбиоза, они являются потомками прокариот, сходных с бактериями или сине-зелеными водорослями, которые, вероятно, в результате фагоцитоза проникли в гетеротрофные анаэробные клетки и стали в них жить как симбионты.

Моделью может служить явление эндоцитоза у некоторых грибов, жгутиковых и амеб: клетки сине-зеленых водорослей фагоцитируются, окружаются двумя мембранами (собственной внутренней и наружной, происходящей из плазмолеммы клетки-хозяина) и сохраняют способность к фотосинтезу.

Согласно другим представлениям, митохондрии и пластиды происходят из выпячиваний плазматической мембраны, которыми были окружены либо части еще примитивного генома, либо плазмиды.

Микрофиламенты представляют собой очень тонкие и длинные нитевидные белковые структуры, встречающиеся во всей цитоплазме. Они обусловливают вязко-эластичную, тиксотропную консистенцию цитоплазмы и обеспечивают внутриклеточные движения, включая сокращение фибрилл в мышечных волокнах.

Функции микрофиламентов:

  • ответственны за перемещение: хлоропластов, которые могут изменять свое положение в зависимости от освещения;
  • клеточных ядер;
  • пузырьков;
  • участвуют: в фагоцитозе (но, не в пино- или экзоцитозе); в образовании перетяжки при клеточном делении (здесь действует кольцо из пучков микрофиламентов, опоясывающих клетку); в движении хроматид и хромосом при делении ядра.

Внутриклеточное движение возникает при взаимодействии микрофиламентов из актина (актиновых нитей) с миозином.

Актин - глобулярный белок, он составляет 5-15 % всего клеточного белка и является важнейшим белком эукариотических клеток. Глобулярный актин (гамма-актин) полимеризуется в актиновые филаменты (F-актин), состоящие из двух закрученных друг около друга спиралей (диаметр - около 6 нм, длина - несколько мкм). Актин образует трехмерную сеть из большого числа нитей или пучки не менее чем из 20 нитей. В клетке существует обратимое равновесие: гамма-актин - F-актин - пучки F-актина.

Миозин в эукариотических клетках содержится в меньшем количестве (0,3-1,5 % клеточного белка), чем актин. Нитевидная молекула миозина (молекулярная масса более 450 000, длина 150 нм) состоит из двух больших и нескольких малых субъединиц, образующих длинную двойную спираль. Один конец этой спирали несет две головки. Конец с головками катализирует расщепление АТФ (миозиновая АТФаза) и может специфически связываться с актином. Актин активирует АТФазу. При расщеплении АТФ освобождается энергия, необходимая для внутриклеточных движений.



Что касается прокариот , то у сине-зеленых водорослей, способных к скользящему движению, и у бактерий существуют микрофиламенты (диаметром 4-6 нм) неизвестной химической природы, актиновые же нити имеются среди бактерий только у микоплазм, которые тоже обладают скользящим движением.


2. Роль актина и миозина в разных типах эукариотических клеток

В мышечных клетках молекулы миозина объединены в толстые (до 20 нм) миозиновые фрагменты (нити). Актиновые и миозиновые нити образуют в мышечных клетках сократимый актомиозиновый комплекс.

В клетках немышечного типа миозиновые филаменты не обнаружены (исключение составляют лишь некоторые амебы). Однако после выделения из этих клеток миозин может полимеризоваться в филаменты. Выделенный из клеток немышечного типа комплекс F-актина с миозином, не соединенным в филаменты, расщепляет АТФ и при этом сокращается. Это сокращение способен тормозить третий белок с большой молекулярной массой (270 000), соединяющий нити актина в сеть.

Тормозящий белок образует вместе с актиновыми филаментами относительно жесткую сеть (цитоскелет). При локальном изменении среды (повышение рН или концентрации Са+2) тормозящий белок отделяется от актина, а миозин в этом случае может присоединяться к концам актиновых нитей; филаменты смещаются относительно друг друга и объединяются в пучки, что приводит к сокращению.


3. Движение протоплазмы в эукариотических клетках

Движение протоплазмы наблюдается почти во всех эукариотических клетках (его скорость составляет 1...6 см/ч). Органеллы перемещаются вместе с протоплазмой, не течет только эктоплазма. Этот процесс лежит в основе амебоидного движения. В растительных клетках может создаваться бесконечный ток протоплазмы вокруг центральной вакуоли. У амеб происходят локальные сокращения сети из актиновых (и миозиновых, если они имеются) филаментов, благодаря чему эндоплазма оттесняется в другой участок клетки.

В гигантских клетках некоторых водорослей с бесконечным вращательным течением протоплазмы пучки актиновых филаментов лежат на границе экто- и эндоплазмы - именно там, где, как полагают, должны действовать движущие силы.

АКТИН

один из осн. белков сократит. элементов мышечного волокна. Может существовать в виде мономера (Г-А., мол. м. ок. 42 тыс.) и в полимеризов. состоянии (Ф-А.).

Молекула Г-А. имеет глобулярную двухдоменную форму и связана с одной молекулой АТФ, к-рая превращается в аденозиндифосфат при полимеризации Г-А. В бессолевых водных р-рах Г-А. не полимеризуегся. В случае добавления КС1 или MgCl 2 процесс начинается при концентрации соотв. 0,1-0,15 или 0,01 М. Возможность полимеризации Г-А. в организме находится в зависимости от актинсвя-зывающих белков, напр. филамина, актинина.

Ф-А.-линейный полимер, образующий пологую спираль (ее нити полярны) с шагом 38 нм и диаметром субъединиц 5,5 нм. Один виток спирали содержит 13-14 молекул Г-А. Полимеризация мономера приводит к резкому повышению вязкости р-ра. Ф-А. образует комплекс с др. сократит. белком-миозином-и оказывает сильное активирующее влияние на его аденозинтрифосфатазную . Важное св-во Ф-А.-способность к координации обменных процессов, к-рая проявляется при его взаимод. с рядом ферментов (киназой фосфорилазы, алъдолазой, глицеральдегид-3-фосфат-дегидрогеназой и др.).

А. присутствует во всех клетках эукариотов (10-15% по массе от всех белков). В немышечных клетках он формирует "цитоскелет" (микрофиламенты цитоплазмы клеток).

Лит.: Основы биохимии, пер. с англ., т. 3, М., 1981, с. 1406-10. Б. Ф. Поглазов.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Синонимы :

Смотреть что такое "АКТИН" в других словарях:

    Актин белок, полимеризованная форма которого образует микрофиламенты один из основных компонентов цитоскелета эукариотических клеток. Вместе с белком миозином образует основные сократительные элементы мышц актомиозиновые… … Википедия

    Актин(ы) - * актын(ы) *actin(s) белок мышечных волокон с М. м. 42 кДа, существующий в двух формах фибриллярной (актин) и глобулярной (актин). А. имеет участки, комплементарные участкам молекул миозина (см.), и входит в состав актомиозина основного… … Генетика. Энциклопедический словарь

    Белок мышечных волокон. Мол. м. 42 000. Две формы: глобулярная (Г А.) и фибриллярная (Ф А.), к рая образуется при полимеризации Г А. в присутствии АТФ и ионов Mg+ + . На каждой молекуле А. имеются участки, комплементарные определённым участкам на … Биологический энциклопедический словарь

    Белок, фибриллярная форма которого образует с миозином основной сократительный элемент мышц актомиозин … Большой Энциклопедический словарь

    АКТИН, белок мышечных волокон, участвующий в сократительных процессах в клетке. Содержится преимущественно в клетках мускульных тканей; реагируя с миозином, образует АКТОМИОЗИН … Научно-технический энциклопедический словарь

    Сущ., кол во синонимов: 1 белок (99) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    актинідія - іменник жіночого роду … Орфографічний словник української мови

    актин - Периодически сокращающийся белок, находящийся внутри эукариотической клетки Тематики биотехнологии EN actin … Справочник технического переводчика

    Белок мышечных волокон. Молекулярная масса около 70 000. Существует в двух формах: глобулярной (Г актин) и фибриллярной (Ф актин), являющейся продуктом полимеризации Г актина. В покоящейся мышце А. находится в форме Ф актина, образуя с… … Большая советская энциклопедия

    Белок, фибриллярная форма которого образует с миозином основной сократительный элемент мышц актомиозин. * * * АКТИН АКТИН, белок, фибриллярная форма которого образует с миозином основной сократительный элемент мышц актомиозин … Энциклопедический словарь

    Actin актин. Белок мышечных волокон (молекулярная масса 42 кД), существует в двух формах фибриллярной и глобулярной, имеет участки, комплементарные участкам молекул миозина , и входит в состав актомиозина … … Молекулярная биология и генетика. Толковый словарь.

механическую функцию выполняет белок: гемоглобин, миозин, коллаген, меланин, или инсулин??? и получил лучший ответ

Ответ от Полина фейгина[гуру]
1.Полиме́р - высокомолекулярное соединение, вещество с большой молекулярной массой (от нескольких тысяч до нескольких миллионов) , в котором атомы, соединённые химическими связями, образуют линейные или разветвлённые цепи, а также пространственные трёхмерные структуры. Часто в его строении можно выделить мономер - повторяющийся структурный фрагмент, включающий несколько атомов. Полимер образуется из мономеров в результате полимеризации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений.
Особые механические свойства:
эластичность - способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки) ;
малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло) ;
способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок) .
Особенности растворов полимеров:
высокая вязкость раствора при малой концентрации полимера;
растворение полимера происходит через стадию набухания.
Особые химические свойства:
способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.) .
Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают уникальным для неживой природы свойством - гибкостью.
2. Белки – это сложные высокомолекулярные природные соединения, построенные из -аминокислот. В состав белков входит 20 различных аминокислот, отсюда следует огромное многообразие белков при различных комбинациях аминокислот. Как из 33 букв алфавита мы можем составить бесконечное число слов, так из 20 аминокислот – бесконечное множество белков. В организме человека насчитывается до 100 000 белков.
Белки подразделяют на протеины (простые белки) и протеиды (сложные белки) .
Число аминокислотных остатков, входящих в молекулы, различно: инсулин – 51, миоглобин – 140. Отсюда Mr белка от 10 000 до нескольких миллионов.
Функции белков в организме разнообразны. Они в значительной мере обусловлены сложностью и разнообразием форм и состава самих белков. Белки - незаменимый строительный материал. Одной из важнейших функций белковых молекул является пластическая. Все клеточные мембраны содержат белок, роль которого здесь разнообразна. Количество белка в мембранах составляет более половины массы.
Многие белки обладают сократительной функцией. Это прежде всего белки актин и миозин, входящие в мышечные волокна высших организмов. Мышечные волокна - миофибриллы - представляют собой длинные тонкие нити, состоящие из параллельных более тонких мышечных нитей, окруженных внутриклеточной жидкостью. В ней растворены аденозинтрифосфорная кислота (АТФ) , необходимая для осуществления сокращения, гликоген - питательное вещество, неорганические соли и многие другие вещества, в частности кальций.
Велика роль белков в транспорте веществ в организме. Имея функциональные различные группы и сложное строение макромолекулы, белки связывают и переносят с током крови многие соединения. Это прежде всего гемоглобин, переносящий кислород из легких к клеткам. В мышцах эту функцию берет на себя еще один транспортный белок - миоглобин.
Еще одна функция белка - запасная. К запасным белкам относят ферритин - железо, овальбумин - белок яйца, казеин - белок молока, зеин - белок семян кукурузы.
Регуляторную функцию выполняют белки-гормоны.
Гормоны - биологически активные вещества, которые оказывают влияние на обмен веществ. Многие

Актин и миозин

Интерес биохимии к процессам происходящим в сокращающихся мышцах основан не только на выяснении механизмов мышечных болезней, но и что может быть даже более важным - это раскрытие механизма превращения электрической энергии в механическую, минуя сложные механизмы тяг и передач.

Для того, чтобы понять механизм и биохимические процессы происходящие в сокращающихся мышцах, необходимо заглянуть в строение мышечного волокна. Структурной единицей мышечного волокна являются Миофибриллы - особым образом организованные пучки белков, располагающиеся вдоль клетки. Миофибриллы в свою очередь построены из белковых нитей (филаментов) двух типов - толстых и тонких. Основным белком толстых нитей является миозин, а тонких - актин. Миозиновые и актиновые нити - главный компонент всех сократительных систем в организме. Электронно-микроскопическое изучение показало строго упорядоченное расположение миозиновых и актиновых нитей в миофибрилле. Функциональной единицей миофибриллы является саркомер - участок миофибриллы между двумя Z-пластинками. Саркомер включает в себя пучок миозиновых нитей, серединой сцепленных по так называемой М-пластине, и проходящих между ними волокон актиновых нитей, которые в свою очередь прикреплены к Z-пластинам.

Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченность. Электронно-микроскопические исследования показали, что поперечная исчерченность обусловлена особой организацией сократительных белков миофибрилл -- актина (молекулярная масса 42 000) и миозина (молекулярная масса около 500 000). Актиновые филаменты представлены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6--8 нм, количество которых достигает около 2000, одним концом прикреплены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка -- тропонина. Тропонин и тропомиозин играют важную роль в механизмах взаимодействия актина и миозина. В середине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) -- анизотропный А-диск. В центре его видна более светлая полоска Н. В ней в состоянии покоя нет актиновых нитей. По обе стороны А-диска видны светлые изотропные полоски -- I-диски, образованные нитями актина. В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре Н-полоски обнаружена М-линия -- структура, которая удерживает нити миозина. На поперечном срезе мышечного волокна можно увидеть гексагональную организацию миофиламента: каждая нить миозина окружена шестью нитями актина.

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Они ориентированы по отношению к оси миозиновой нити под углом 120°. Согласно современным представлениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТ-фазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси. миозин актин биохимия

Использование микроэлектродной техники в сочетании с интерференционной микроскопией позволило установить, что нанесение электрического раздражения на область Z-пластинки приводит к сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и I уменьшается. Эти наблюдения свидетельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы -- собственная длина актиновых и миозиновых нитей не изменялась. В результате этих экспериментов выяснилось, что изменялась область взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили Н. Huxley и A. Huxley предложить независимо друг от друга теорию скольжения нитей для объяснения механизма мышечного сокращения. Согласно этой теории, при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых миозиновых. В настоящее время выяснены многие детали этого механизма и теория получила экспериментальное подтверждение.

Актин - белок мышечной ткани, что вместе с другим белком - миозином - образует актомиозину - основную составляющую сократительных нитей мышечных волокон.

Актин - глобулярный структурный белок. Молекулярная масса 42000 Да. Существует две формы: глобулярная и фибриллярные, образующегося при полимеризации глобулярного актина в присутствии АТФ и ионов магния. На каждой молекуле актина есть участки, комплементарные определенным участкам на головках молекул миозина и способны взаимодействовать с ними с образованием актомиозину - основного сократительного белка мышц. В 1см і мышцы содержится около 0,04 г актина. Система актин-миозин является общей для сократительных структур как позвоночных, так и беспозвоночных животных. В циозоли актин в основном связан с АТФ, но также может звьязиватися с АДФ. Комплекс АТФ-актина полимеризуется быстрее и разъединяется медленнее, чем комплекс актин-АДФ. Актин - один из обильнее протеинов во многих эукариотических клетках, с концентрациями более 100 мкм. Это также один из наиболее хорошо сохранившихся белков, отличаясь не более чем на 5% между такими организиамы, как, водоросли и человек.

Микрофиламенты - нити белка актина немьязовои природы в цитоплазме эукариотических клеток. Диаметр 4 ... 7нм. Под плазматической мембраной микрофиламенты образуют сплетения, в цитоплазме клетки формируют пучки из параллельно ориентированных нитей или трехмерный гель, формируя цитоскелет. В их состав входят, кроме актина, другие сократительные белки миозин, тропомиозин, актинин, отличающиеся от соответствующих мышечных белков, а также специфические белки (винкулин, фрагмин, филамин, и т.п.). Микрофиламенты находятся в динамическом равновесии с мономерами актина. Микрофиламенты являются сократительные элементы цитоскелета и непосредственно участвуют в изменении формы клетки при розплощуванни, прикреплены к субстрату, амебоидному движении, эндомитоз, циклоз (для растительных клеток), формировании кольца цитотомии в животных клетках, поддержании микроворсинок в клетках кишечника беспозвоночных. К микрофиламентов косвенно прикрепляются некоторые мембранные белки-рецепторы.

Миозин - белок мышечной ткани, что вместе с другим белком - актином - образует актомиозину - основную составляющую сократительных нитей мышечных волокон. Миозин - глобулярный структурный белок.

Молекула миозина состоит из двух частей: длинной палочкообразнои участка («хвоста») и присоединенной к одному из его концов глобулярной участка представлена двумя одинаковыми «головками». Молекулы миозина расположены в миозиновои нитке таким образом, что головки регулярно распределяются по всей ее длине, кроме небольшой срединной участки, где их нет («голая» зона). В тех местах, где нити актина и миозина перекрывающихся миозином головки могут прикрепляться к соседним актиновых нитей, и в результате этого взаимодействия может происходить сокращение мышцы.

Энергия для совершения такой работы освобождается при гидролизе АТФ; все миозином головки проявляют АТФазну активность, прикрепление миозинових головок зависит от концентрации ионов Са2 + в саркоплазме. Миозиновои АТФаза активируется при взаимодействии актина с миозином. Ионы Mg2 + могут ингибировать этот процесс.

Использованная литература

  • 1. Г. Дюга, К. Пенни «Биоорганическая химия», М., 1983
  • 2. Д. Мецлер «Биохимия», М., 1980
  • 3. А. Ленинджер «Основы биохимии», М., 1985

Есть пять основных мест, где может быть приложено действие актин-связывающих белков. Они могут связываться с мономером актина; с «заостренным», или медленно растущим, концом филамента; с «оперенным», или быстро растущим, концом; с боковой поверхностью филамента; и наконец, сразу с двумя филаментами, образуя поперечную сшивку между ними. В дополнение к пяти указанным типам взаимодействия актин-связывающие белки могут быть чувствительны или нечувствительны к кальцию. При таком разнообразии возможностей вряд ли покажется удивительным, что было обнаружено множество актин-связывающих белков и что некоторые из них способны к нескольким типам взаимодействия.

Белки, связывающиеся с мономерами, подавляют формирование затравок, ослабляя взаимодействие мономеров друг с другом. Эти белки могут уменьшать, но могут и не уменьшать скорость элонгации - это зависит от того, будет ли комплекс актина с актин-связывающим белком способен присоединяться к филаментам. Профилин и фрагмин - чувствительные к кальцию белки, взаимодействующие с актиновыми мономерами. Оба нуждаются в кальции для связывания с актином. Комплекс профилина с мономером может надстраивать предсуществующие филаменты, а комплекс фрагмина с актином нет. Поэтому профилин в основном ингибирует нуклеацию, тогда как фрагмин подавляет и нуклеацию, и элонгацию. Из трех нечувствительных к кальцию взаимодействующих с актином белков два - ДНКаза I и белок, связывающийся с витамином D, - функционируют вне клетки. Физиологическое значение их способности связываться с актином неизвестно. В головном мозге есть, однако, белок, который, связываясь с мономерами, деполимеризует актиновые филаменты; его деполимеризующее действие объясняется тем, что связывание мономеров приводит к снижению концентрации доступного для полимеризации актина.

«Оперенный», или быстро растущий, конец актиновых филаментов может быть блокирован так называемыми кепирующими белками, а также цитохалазином В или D. Блокируя точку быстрой сборки филаментов, кепирующие белки способствуют нуклеации, но подавляют элонгацию и стыковку филаментов конец в конец. Суммарный эффект состоит в появлении укороченных филаментов, это обусловлено как увеличением количества затравок, конкурирующих за свободные мономеры, так и отсутствием стыковки. Известно по меньшей мере четыре белка, действующих подобным образом в присутствии кальция: гельзолин, виллин, фрагмин, а также белок с мол. массой 90 кДа из тромбоцитов. Все они способны сокращать обусловленную нуклеацией лагфазу при полимеризации очищенных мономеров и укорачивать уже образовавшиеся филаменты. Существуют также и нечувствительные к кальцию кепирующие белки. Так, белки с мол. массой 31 и 28 кДа из акантамебы и белок с мол. массой 65 кДа из тромбоцитов оказывают свое действие независимо от присутствия или отсутствия кальция.

Еще одна точка, в которой возможно взаимодействие белков с филаментами, - это «заостренный», или медленно растущий, конец. Связывание белка в ней может инициировать нуклеацию и мешать стыковке филаментов. Оно влияет и на скорость элонгации, причем это влияние зависит от концентрации актина. При значениях последней в интервале между критическими концентрациями для медленно растущего и быстро растущего концов связывание белка с медленным концом будет увеличивать скорость элонгации за счет предотвращения потери мономеров на нем. Если, однако, концентрация актина превосходит большую из критических, связывание белка с медленным концом приведет к снижению суммарной скорости элонгации вследствие блокирования одной из точек присоединения мономеров. Общим итогом указанных трех эффектов (стимуляции нуклеации, подавления стыковки и подавления элонгации) будет увеличение числа и уменьшение длины филаментов. Эти эффекты сходны с теми, которые вызывают белки, связывающиеся с «оперенным» концом. Вот почему для того, чтобы определить, к какому из двух классов относится данный белок, т. е. на какой конец филаментов он действует, нужно провести либо опыты по конкуренции этого белка с такими, которые связываются заведомо с быстрым концом, либо опыты с полимеризацией на пред-существующих затравках. В настоящее время лишь про один белок определенно известно, что он связывается с «заостренным», или медленно растущим, концом актиновых филаментов, а именно про акументин, содержащийся в больших количествах в макрофагах. Возможно, что это справедливо и для бревина - сывороточного белка, который вызывает быстрое снижение вязкости растворов F-актина, укорачивая филаменты без увеличения концентрации свободных мономеров. Ни бревин, ни акументин нечувствительны к концентрации кальция.


Четвертый тип связывания с актиновыми филаментами - это связывание с их боковой поверхностью без последующего сшивания их друг с другом. Присоединение белков к поверхности может как стабилизировать, так и дестабилизировать филаменты. Тропомиозин связывается нечувствительным к кальцию образом и стабилизирует F-актин, тогда как северин и виллин, связываясь с актиновыми филаментами, «разрезают» их в присутствии кальция.

Но, пожалуй, наиболее эффектными из актин-связывающих белков являются те, которые могут сшивать актиновые филаменты между собой и вызывать тем самым образование геля. Связываясь с F-актином, эти белки индуцируют обычно также и нуклеацию. По меньшей мере четыре сшивающих фибриллярный актин белка способны индуцировать гелеобразование в отсутствие кальция. Это а-актинин из тромбоцитов, виллин, фимбрин и актиногелин из макрофагов. Все они превращают раствор F-актина в жесткий гель, способный препятствовать движению металлического шарика; добавление кальция приводит к растворению такого геля. Все четыре перечисленных белка являются мономерными. В случае виллина белковая молекула может быть разделена на отдельные домены: сердцевину, которая чувствительна к кальцию и способна связываться с актиновыми филаментами и кепировать их, и головку, которая нужна для сшивания филаментов в отсутствие кальция. Существуют также многочисленные нечувствительные к кальцию сшивающие белки. Два из них, фи-ламин и актин-связывающий белок из макрофагов, являются гомодимерами, они состоят из длинных, гибких белковых субъединиц. Мышечный а-актииии - еще один нечувствительный к кальцию сшивающий белок. Образовывать сшивки без помощи дополнительных белков способны также винкулин и белок высокой молекулярной массы из клеток линии ВНК. В то же время фасцин из морских ежей сам по себе может обеспечить формирование лишь узких, похожих на иглы пучков актиновых филаментов, а для того, чтобы вызвать гелеобразование, ему нужно содействие белка с мол. массой 220 кДа.

Семейство спектрина - одно из самых интересных в группе тех сшивающих белков, на которые кальций непосредственно не действует. Собственно спектрин - это тетрамер (ар)г, обнаруженный первоначально в мембранном скелете эритроцитов. ap-Димеры связываются друг с другом «хвост к хвосту», а головки молекул остаются свободными и могут взаимодействовать с олигомерами актина. а-Субъединица каждого димера может, кроме того, взаимодействовать с кальмодулином - кальций-связывающим белком, участвующим во многих регулируемых кальцием процессах. До сих пор неизвестно, какое действие оказывает связывание кальмодулина на активность спектрина. Спектриноподобные молекулы найдены к настоящему времени в клетках многих типов, так что правильнее будет говорить о семействе спектрина. Субъединица спектрина из эритроцитов имеет мол. массу 240 кДа. Иммунологически родственный ей белок с такой же мол. массой был обнаружен в большинстве исследованных типов клеток. Мол. масса |3-субъединицы спектрина из эритроцитов - 220 кДа. В комплексе с белком с мол. массой 240 кДа, реагирующим с антителами против а-спектрина, в клетках может обнаруживаться, однако, и субъединица с мол. массой 260 кДа (найдена в терминальной сети) или, например, 235 кДа (найдена в нервных клетках и клетках других типов). Эти родственные, дающие перекрестную иммунологическую реакцию комплексы были описаны сначала как самостоятельные белки и получили название TW260/240 и фодрина. Таким образом, подобно многим другим цитоскелетным белкам, белки семейства спектрина являются тканеспецифичными. То, что все эти белки содержат кальмодулин-связывающий домен, было установлено лишь недавно, и что из этого следует, еще предстоит понять.

Миозин - единственный из имеющих отношение к актину белков, способный генерировать механическую силу. Производимая им за счет АТР механическая работа лежит в основе мышечного сокращения и обеспечивает, как полагают, натяжение, развиваемое фибробластами и другими клетками при контакте с внеклеточным матриксом. Взаимодействие миозина с актином очень сложно - настолько, что ему была посвящена отдельная книга в этой серии1. Миозин производит работу путем циклического взаимодействия с актином. Миозин-ADP связывается с актиновыми филаментами, происходит изменение конформации миозина, сопровождающееся освобождением ADP, и затем АТР, если он есть в растворе, замещает освободившийся из миозина ADP и индуцирует отсоединение актиновых нитей от миозина. После гидролиза АТР может начаться следующий цикл. Кальций регулирует этот процесс в нескольких точках. В некоторых мышечных клетках он взаимодействует с тропонином, контролируя связывание тропомиозина с актином. Про такие клетки говорят, что в них регуляция осуществляется на уровне тонких нитей. В других мышцах кальций действует на молекулу миозина - либо прямо, либо активируя ферменты, фосфорилирующие ее легкие цепи.

В некоторых немышечных клетках кальций регулирует сокращение на уровне сборки миозиновых нитей.

Взаимосвязь между разными классами актин-связывающих белков становится яснее, если рассматривать ее с точки зрения теории гелей, предложенной Flory. Эта теория утверждает, что при достаточно большой вероятности сшивок между полимерами формируется сшитая: трехмерная сеть. Тем самым предсказывается существование «точки гелеобразования», в которой должен происходить резкий переход от раствора к гелю, отчасти сходный в математическом отношении с такими фазовыми переходами, как плавление и испарение; дальнейшее увеличение количества сшивок - за точкой гелеобразования - должно приводить лишь к изменению-жесткости геля. Таким образом, белки, образующие поперечные сшивки, будут переводить вязкий раствор F-актина в состояние геля, а те белки, которые разрушают филаменты или вызывают увеличение их числа, станут растворять гель путем снижения средней длины полимеров, не сопровождающегося возрастанием количества сшивок: гель растворится, когда плотность распределения сшивок упадет ниже уровня, определяемого точкой гелеобразования. Миозин может взаимодействовать с гелем и вызывать его сокращение. Теория гелей оказывается полезной при сопоставлении свойств актин-связывающих белков разных классов и при разработке методов исследования, их функций. Следует, однако, иметь в-виду, что теория гелей рассматривает лишь изотропные структуры и сама по себе не учитывает топологических особенностей конкретных систем. Как станет ясно из. дальнейшего, топология цитоскелета является чрезвычайно важной его характеристикой, которую теория гелей: предсказать пока не может.

Для осмысленной интерпретации результатов химического исследования белков необходимо детальное знание условий внутри клетки, включая точную стехиометрию всех белков, имеющих отношение к изучаемым процессам, и такие регуляторные факторы, как pH, рСа,. концентрация нуклеотидов, а также, по-видимому фосфолипидный состав прилегающих мембран. В ситуации, когда белки могут в стехиометрии 1:500 эффективно» индуцировать явления, несущие черты резких кооперативных переходов, количественные предсказания становятся, очевидно, сомнительным делом.

Что еще почитать