Факельный оголовок со струйным затвором. Требования к устройству и эксплуатации факельных систем

Предлагается факельный оголовок с подачей пара диаметром 30" с панелью розжига и контроля пламени пилотных горелок. Диаметр оголовка 30" выбран исходя из диаметра факельного ствола 800 мм, для сжигания максимального аварийного сброса 1630 кг/ч достаточно было бы оголовка диаметром 6".

Данные технологического процесса факельного сжигания

Максимальный сброс
Расход, кг/ч 1630
Температура, °С 25
Давление на входе в ствол (избыточное), кПа 70
Молекулярный вес, кг/кмоль 44-57
Состав факельного газа, % об.
CH 4 -С2Н6 1.0
СЗН8 до 97.0
iC 4 H 10 до 97.0
nС4Н10 до 98.0
С5Н14 до 0,5
Диаметр входного патрубка, мм 800
Бездымность Да
Пар для бездымной работы да
Скорость ветра, м/с 4
Конструктивные требования
Расчетное давление (избыточное) 3.5 кг/см²
Расчетная температура -52 °С / + 38 °С
Максимальная скорость ветра 4 м/с
Сейсмичность 6 баллов
Условия площадки
Температура воздуха -52 °С / +38 °С
Атмосферное давление 1 атм
Энергоресурсы
Пилотный газ Природный газ
Продувочный газ Природный газ
Газ для розжига Требуется
Сжатый воздух для розжига требуется
Пар Да*
Электроэнергия 220/380В, 50Гц, 3ф. (пульт управления)
Электроклассификация ГОСТ 15150-69

Примечания:

* Давление пара на входе в оголовок должно быть не менее 7 бар (изб.)
** Температура пара 250 °С (расчетная).

Рабочие характеристики
Расчетный расход, кг/ч 1630 1630
Молекулярный вес, кг/кмоль 44 57
Температура газа 25 25
Низшая теплотворная способность (БТЕ/ф3) 2332 2980
Перепад давления в факельном
оголовке. кПа (изб.)
10 10
Скорость на выходе, Mach (м/с) 0.005 0.006
Бездымность* Да Да
Тепловое излучение
(на расстоянии 50 м от основания факела)
<1.4 кВт/м² <1.4 кВт/м²
Уровень шума
(на расстоянии 50 м от основания факела)**
80 дБА 80 дБА

Примечания:

* Подача пара обеспечит полностью бездымное сжигание сбрасываемого газа.
** Уровни шума включают погрешность ±3 дБ. Уровни шума не включают пренебрежимо малое значение фонового шума. Фоновый шум должен быть как минимум на 10 дБ меньше расчитанных уровней шума в каждом диапазоне частот

Примечания:

* Продувочным газом может быть любой газ выше точки росы при внешних условиях без кислорода, без пара и без водорода.
** Паровая труба идущая по стволу факела должна быть в обязательном порядке изолирована с целью обеспечения необходимых параметров пара у факельного оголовка.

Основное предложение

  • Факельный оголовок со вспомогательной подачей пара, оборудованный стабилизационным кольцом, ветрозащитным экраном, паровыми линиями, пилотными линиями и манифольдом
  • Аэродинамический затвор
  • 3 (три) ветрозащищенных пилотных горелки с высокоэнергетическим запальником. Каждая пилотная горелка оборудована единичной термопарой
  • Соединительная кабельная коробка для соединения термопары с кабелем
  • Стыковочные фланцы с прокладками и болтами (крепежными элементами), включая 10% запасных болтов и 2 набора прокладок на размер.
  • Блок регулировки пилотного газа
  • Ручная/Автоматическая комбинированная система зажигания (высокоэнергетическая и с генератором фронта пламени («бегущий огонь»)), включая высокоэнергетические электроды, кабели от трансформатора к электродам, трубопроводы розжига от блока розжига до пилотных горелок.
  • 140 м удлинительного кабеля термопар
  • 3x140 м кабель высокоэнергетического зажигания
  • Техническая документация на русском языке, сертификат ГОСТ-Р.

Опционально:

  • Оптическая система обнаружения пламени пилотных горелок
  • Блок регулировки подачи пара

Экономичный факельный оголовок с подачей пара является экономически выгодным решением для достижения бездымного горения. Хотя оголовок эффективно использовался в течение некоторого времени, наш новый дизайн предлагает усовершенствованные технические характеристики.

  • Эффективное Бездымное горение
  • Усовершенствованная шумоизоляция и потребление пара
  • Стабильность работы
  • Минимизация износа
  • Уменьшение опускания пламени

Бездымная работа:

Дым появляется при неполном сгорании газов, и нагоревший углерод поступает в атмосферу в виде дыма. Неполное сгорание является результатом недостаточного количества смешанного воздуха в центре факела для обеспечения полного сгорания. Факельный оголовок перемешивает воздух и газ внутри пламени и обеспечивает полное сгорание. Конструкция факельного оголовка состоит из многоточечной системы паровых сопел, установленных на коллектор (с уплотнительным кольцом) на вершине факельного оголовка. Для достижения бездымного горения факельный оголовок может эксплуатироваться только при использовании требуемого количества пара, при постоянном поддержании минимального расхода.

Стабильность:

Обычные трубчатые факелы демонстрируют неполное сжигание, и при высокой скорости на выходе могут погаснуть из-за недостаточной устойчивости пламени. Чтобы исключить эту проблему, компания предоставляет оголовок с удержанием пламени, который создает зону низкого давления на выходе. Эта зона низкого давления гарантирует как полное сжигание отработанных газов, так и устойчивость пламени при высокой скорости на выходе.

Опускание пламени:

При воздействии ветра на факельный оголовок, зона низкого давления создается на подветренной стороне факела. Данная зона низкого давления оттягивает пламя вниз, заставляя газы воздействовать и сгорать на корпусе, как показано на оголовке без кольца справа. Кольцо располагается по периметру факельного оголовка, который предназначен поднимать пламя вертикально и уменьшать опускание пламени. Результат дополнительной защиты - увеличение срока службы оголовка. Ветрозащитное ограждение также предоставляется в качестве дополнительной защиты.

Факельный оголовок с подачей пара

Ручная/автоматическая панель управления розжигом и контроля пламени, совмещенная, климато/взрывозащищенная

Ручная/Автоматическая системы зажигания для удаленного зажигания пилотных горелок.

Генератор бегущего огня и Высокоэнергетическая система зажигания с Блоком управления

Взрывозащищенный пульт управления зажиганием, выполнен из литого алюминия, подходит для зоны 2, группа газовой смеси II В, ТЗ, включает в себя следующие компоненты:

  • 1 Селектор подачи/отключения питания
  • 1 Индикатор подачи/отключения питания
  • 1 Кнопка бегущего огня «Зажигание»
  • 1 Трансформатор зажигания для бегущего огня
  • 1 Кнопка проверки индикаторов
  • 1 Селекторный переключатель на ручной или автоматический режим зажигания
  • 3 Кнопки высокоэнергетического зажигания
  • 6 Индикаторов включения/выключения для статуса пилота
  • Свободный контакт для потребителей
  • Когда термопара обнаруживает на своей пилотной горелке затухание пламени, она автоматически запускает последовательность повторного зажигания аварийной горелки

Соединительные коробки

Объем поставки входят следующие соединительные коробки из литого алюминия:

  • Кол-во 1 CK верхнего уровня для термопар
  • Кол-во 1 CK основания ствола для термопар
  • Кол-во 1 CK верхнего уровня для высоковольтных кабелей
  • Кол-во 1 CK основания факела с 3 высокоэнергетическими блоками зажигания

Кабели

В объем поставки входят следующие кабели:

  • Компенсационный тефлоновый кабель для термопар (3 пары), изолированный вдоль факельного ствола.
  • Компенсационный армированный ПВХ кабель для термопар (3 пары), изолированный, от факельного ствола до панели зажигания (длина определена предварительно)
  • Высоковольтный термостойкий кабель Habia вдоль факельного ствола.
  • Высоковольтный термостойкий кабель Draka от основания факельного ствола до панели зажигания (длина определена предварительно).

Ветрозащищенные пилотные горелки

Ветрозащитная пилотная горелка предлагает наилучшую для факельных пилотных горелок гибкость в определении пламени и розжиге вместе с проверенной высокой производительностью. Горелка способна сохранять горение при ветре в 160 миль/час.

В соплах пилотной горелки используются мощные электроды. Это высокотемпературные керамические электроды, которые помещены в защитную трубу из нержавеющей стали.

Ветрозащитная пилотная горелка

Конструкционные материалы
Секция Mатериал
Оголовок пилота 310 SS
Линия зажигания 310 SS
Основная линия 310 SS
Верхний кронштейн 310 SS
Нижний кронштейн 316L SS
Смеситель 316L SS
Фильтр 316L SS
Высоковольтный запальник Khantal
Кабели 310 SS
Проектные данные
Общая длина 2.60 метров
Bес 40 кг
Кол-во термопар 1 duplex
Длина термопар 5 м
Потребление энергоносителей
Топливо на пилот 1,6 Нм³/ч на пилотную горелку (природный газ) при 1 Бар

Указанное ниже устройство является устройством, зависимым от скорости потока газа и функционирующем при условии, что атмосферный воздух поступает в факельную систему вдоль внутренних стенок факельного оголовка. Это коническая конструкция, которая расположена внутри факельного оголовка. Она препятствует прохождению воздуха ниже по внутренней стенке и перенаправляет его движение вверх и в центр. Кроме того, уменьшение потока воздуха увеличивает и фокусирует поток продувочного газа в центр оголовка выдавливая любой атмосферный воздух из оголовка.

Стоимость эксплуатации повышается из-за расхода продувочного газа. Для демонстрации эффективности устройств в плане понижения требований к объему продувочного газа и, одновременно, в плане предотвращения попадания кислорода в факельную систему, было потроено три идентичных факельных ствола. Один из них оснащен молекулярным затвором, другой - данным устройством, а у третьего отсутствует какое-либо устройство. Факельные стволы эксплуатировались в течение 8 месяцев, и в процессе этого замерялось содержание кислорода б метров ниже факельного оголовка.

Как следует из вышеприведенной таблицы данных, данное устройство значительно снижает скорость продувочного газа. Для него достаточно 0,012 м/с продувочного газа для поддержания приемлемого уровня кислорода для любых неблагоприятных погодных условий. Минимальная скорость продувочного газа без устройства составляет от 0.06 до 0.15 м/с. Если требуется обеспечить нулевой доступ кислорода или защиту от потенциальных потерь продувочного газа, то следует использовать молекулярный затвор.

Блок регулировки подачи пара

Блок регулировки подачи пара предназначен для плавной регулировки подачи пара к оголовку в зависимости от расхода факельного газа.
Данный блок состоит из расходомера, датчика давления и управляющего пневматического клапана.
Данный блок должен управляться из АСУ ТП заказчика.
Компания предоставляет кривую зависимости подачи пара от расхода факельного газа.
Разработка программы управления не входит в объем поставки.
Для работы данного блока необходима информация о расходе факельного газа.
Расходомер факельного газа не входит в объем поставки.

Оптическая система обнаружения пламени пилотных горелок

Факельные системы спроектированы для сжигания взрывоопасных газов в условиях нормальной эксплуатации и в аварийных ситуациях. При погасании пламени взрывоопасные газы могут случайно сбрасываться в окружающую среду. Постоянное трение пламени факельной пилотной горелки - принципиальное требование для корректной эксплуатации системы и обеспечения безопасности. и настоящий момент, пламя многих пилотных горелок контролируется посредством использования термопар, которые должны монтироваться в факел. Данная система, несмотря на свою эффективность, может создавать трудности при сбое термопары. Сбой термопары может происходить на некоторых факелах из-за сочетания нагревания и окисления. Доступ к неисправным компонентам зачастую сложен и дорог. Когда система выведена из строя, статус безопасности для пилотной горелки не предоставляется.

Факельные системы и установки от ООО «Салюс» разработаны и изготавливаются в соответствии с современными требованиями безопасности и учитывают в своей конструкции все основные принципы энергосбережения, которые обладают всеми необходимыми сертификатами.

Применение современных факельных систем:

  • Применяются на объектах сбора и подготовки продукции скважин нефтяных и газовых месторождений, объектах нефтехимической, нефтеперерабатывающей, химической и других отраслей промышленности, позволяют избежать применения морально и технически устаревших, металлоемких, дорогостоящих и зачастую небезопасных факельных систем;
  • Используются при аварийных, постоянных и периодических сбросах, выходе оборудования из строя, отключении электроэнергии, плановом ремонте, а также для сжигания паров и органических веществ;
  • Позволяют осуществлять высокоэффективное сжигание любых соотношений углеводородов, кислых и инертных газов за счет соответствующей модификации факельного оголовка;
  • Выпускаются открытого, закрытого и мобильного типа.

Преимущества факельных систем

  1. Уникальный струйный затвор

Уникальность. Конструкция факельных оголовков, используемых в системах СФС, включает в себя уникальный струйный затвор, не имеющий аналогов в мире и отменяющий необходимость в использовании лабиринтного затвора.

Ус транение горения внутри фак ельного оголовка. Факельный оголовок устраняет горение внутри, поскольку струйный затвор расположен у верхней кромки оголовка. Даже при минимальных расходах струйный затвор предотвращает попадание воздуха внутрь факельного оголовка.

Поэтому рекомендуемый нами расход затворного газа является фактическим расходом, при котором предотвращается внутреннее горение. Другие типы затворов, такие как лабиринтные затворы, не предотвращают внутреннее горение при рекомендуемых для них расходах затворного газа.

Без струйного затвора, расположенного у верхней кромки оголовка, происходит следующее:

  • горение внутри оголовка;
  • повышенный расход затворного газа для предотвращения внутреннего горения;
  • уменьшенный срок службы оголовка;
  • повышенный уровень теплового излучения.

Устранение горения внутри факельного ствола. При использовании лабиринтного затвора происходит попадание воздуха внутрь ствола и внутреннее горение. По результатам испытаний при расчетной скорости затворного газа и использовании лабиринтного затвора уровень содержания кислорода составляет 6% на дне лабиринтного затвора. При таком уровне кислорода не обеспечивается защита лабиринтного затвора или факельного оголовка. Образование воспламеняемой газовой смеси внутри лабиринтного затвора и факельного оголовка приводит к горению внутри и очень короткому сроку службы.

Струйный затвор устраняет горение внутри факельного ствола, поскольку струйный затвор расположен у верхней кромки оголовка, и значительно увеличивает срок его службы.

Значительное понижение расхода затворного газа. Использование струйного затвора значительно понижает потребление затворного газа. Так, например, для факельного оголовка диаметром 900 мм рекомендуемый расход затворного газа составляет:

Устранение необходимости в футеровке и дренаже. Футеровка, выложенная внутри лабиринтного затвора, обычно трескается и падает вниз, забивая дренажное отверстие. В результате конденсат и дождевая вода собираются внутри лабиринтного затвора.

Во­первых, сбрасываемый газ будет проходить через жидкую пробку, захватывая жидкость, что приведет к выбросу через факельный оголовок горящих капель. Во­вторых, при минусовых температурах жидкая пробка замерзает и не пропускает сбрасываемый газ. Это представляет собой чрезвычайную опасность и может вызвать аварию на предприятии. В связи с этим, для лабиринтного затвора необходим электро­ или пароподогрев.

Струйный же затвор находится у среза оголовка и таким образом устраняет необходимость в футеровке, дренаже и использовании электро­ или пароподогрева.

Устранение необходимости в частом профилактическом ремонте и обслуживании. В результате вышеуказанных проблем для лабиринтного затвора требуется более частый профилактический ремонт, а также проверка толщины стенок и удаление конденсата и футеровки со дна затвора.

Применение струйного затвора устраняет необходимость в частом профилактическом ремонте и обслуживании факельного оголовка и ствола.

Отсутствие коррозии и экономия металла на изготовлении затвора. Лабиринтный затвор обычно производится из низкоуглеродистой стали. В результате того, что в лабиринтном затворе собирается конденсат, зачастую с коррозионными частицами, а также происходит горение внутри, стенки лабиринтного затвора подвергаются сильной коррозии и прогорают насквозь.

Струйный затвор производится из такой же нержавеющей стали, что и верхняя часть факельного оголовка. В результате устраняются проблемы с коррозией и необходимость в частых профилактических ремонтах. Кроме того, значительно уменьшается расход металла на изготовление затвора.

  1. Уникальная конструкция факельного оголовка

Увеличение срока службы за счет использования конического козырька. Факельный оголовок снабжен специальным козырьком, защищающим верхнюю часть оголовка и создающим воздушную камеру. Козырек предотвращает соприкосновение пламени с оголовком при боковом ветре, когда пламя наклоняется к одной стороне оголовка. Таким образом, козырек снижает температуру воздействия на оголовок, тем самым значительно увеличивая его срок службы. Создание воздушной камеры с помощью козырька также является важным фактором.

Если одна сторона оголовка подвергается воздействию пламени в течение длительного времени, температура металла может повыситься до опасного уровня. Благодаря воздушной камере тепло отводится (рассеивается) от металла, поддерживается низкая температура поверхности и увеличивается срок службы. Еще одно преимущество использования козырька заключается в защите пламени дежурной горелки при боковом ветре, который может сорвать это пламя.

  1. Уникальная конструкция дежурных горелок

Улучшение безопасности и надежности за счет использования двойной системы розжига. Горелки могут поставляться в одном из трех исполнений:

  • горелки для электроискрового розжига;
  • горелки для розжига бегущим огнем;
  • горелки с двойным розжигом (электроискровой и бегущий огонь), обеспечивающие наибольший уровень безопасности работы установки.

Увеличение срока службы горелок и термопар. Срок службы дежурных горелок и термопар значительно увеличен благодаря использованию специальной улучшенной конструкции козырька горелки, а также благодаря тому, что дежурная горелка защищена коническим козырьком факельного оголовка. Кроме того, каждая термопара имеет свой собственный защитный кожух. Все вышеуказанное приводит к тому, что срок службы дежурных горелок и термопар значительно превышает срок службы горелок других конструкций.

Значительное понижение расхода пилотного газа. Благодаря уникальной конструкции дежурной горелки расход пилотного газа по меньшей мере в три раза меньше, чем расход газа в любых других горелках, что приводит к значительной годовой экономии.

Специальные оголовки для факельных систем

Для бездымного сжигания сбрасываемых газов используются специальные оголовки следующих типов:

  1. Факельные оголовки с подачей пара

В факельных системах с подачей пара в зависимости от диаметра оголовка пар может подаваться:

  • по центру,
  • по кольцу,
  • по кольцу и по центру,
  • по двум кольцам и по центру.

Для значительного уменьшения расхода пара и улучшения полноты сгорания в факельных оголовках применяется усовершенствованная система подачи пара. При этом пар подается в зависимости от расхода сбрасываемого газа как в центральную паровую форсунку, так и в малое и большое паровые кольца.

  1. Факельные оголовки с подачей воздуха

Факельные системы с подачей воздуха являются современным и высокоэкономичным способом обеспечения требуемой бездымности. При этом устраняется необходимость в дорогостоящем паровом коллекторе, его теплоизоляции и дренаже конденсата.

С учетом того, что устраняется необходимость в использовании пара, достигается очень значительная экономия, равная несколькиммиллионамрублей.

Факельная система с подачей воздуха включает в себя оголовок специальной конструкции, воздуходувку, датчик расхода и систему управления воздуходувкой.

  1. Скоростные факельные оголовки

Скоростные факельные оголовки представляют собой оголовки с одиночным или множественными соплами для реактивного смешивания с воздухом.

Скоростные факельные оголовки обеспечивают бездымность в верхнем диапазоне аварийного сброса, при этом не требуется подача пара или воздуха.

Факельный ствол

При использовании открытых факельных систем возможно применение следующих типов стволов:

  • мачтовые
  • самонесущие
  • со сдвоенныеми стволами
  • на растяжках

Самонесущие

Мачтовые

На растяжках

Со сдвоенными стволами

Стандартный комплект поставки факельной системы

  • факельная установка: факельный оголовок, факельный ствол, лестницы и площадки с ограждениями, дежурные горелки и система розжига и контроля пламени;
  • блок подготовки и редуцирования газа;
  • трубопровод пилотного газа;
  • факельный сепаратор или расширительная камера;
  • емкость дренажная с насосной станцией откачки жидкости;
  • система автоматизации и контроля.

Комплектность поставки определяется по согласованию с заказчиком, в комплект поставки могут входить дополнительные опции.

Выбор высоты факельного ствола

Производятся расчеты теплового, шумового воздействия горения на окружающую среду и расчеты рассеивания хвостовых газов для служб охраны труда и здоровья, экологических территориальных органов.

Данные по тепловому излучению для выбора высоты ствола

Факельные установки закрытого типа

Преимущества закрытых факелов:

  • нет дыма;
  • не нужен пар;
  • нет теплового излучения;
  • нет видимого пламени;
  • нет запаха;
  • низкий уровень шума;
  • простота в эксплуатации;
  • высокая надежность;
  • минимальное обслуживание.

Современные закрытые факельные системы имеют три очень важных преимущества:

  • Обеспечивают бездымное сжигание наиболее тяжелых трудносжигаемых газообразных отходов, а также влагосодержащих отходов с низкой теплотворной способностью без использования дорогостоящего пара, воздуходувок или открытых горелок и насадок;
  • Могут быть реконструированы в факельную систему термического окисления путем добавления регулятора тяги к свободной естественной тяге воздуха многофорсуночных многоструйных горелок;
  • В одной камере сгорания (общей или конструкции «камера в камере») возможно сжигание нескольких разных потоков газообразных или жидких сбросов.

Эффективность удаления продуктов сгорания газообразных и жидких отходов для факельных систем термического окисления превышает 99,9% – это лучший показатель сокращения выбросов окислов серы (SOx), окислов азота (NOx), а также других летучихканцерогенныхвыбросов.

Закрытая факельная система может быть оснащена одной из двух типов систем утилизации тепла: это может быть предварительный нагрев (через теплообменник) потока холодных отходов с целью более эффективного их сжигания или котел для получения водяного пара.

В закрытых факельных системах достигнут высочайший уровень безопасности и надежности. Это обеспечивается сочетанием передовых методов проектирования с современным высокотехнологичным производством.

В системах автоматизации закрытых факельных систем применены самые современные технические решения и разработки: автоматические схемы взаимоблокировок, жидкостные затворы, сканеры пламени, работающие в ультрафиолетовом диапазоне, отказоустойчивые системы запуска и останова, световая сигнализация, многоступенчатые горелочные головки со встроенными огнепреградителями и устройствами предотвращения детонации, а также дежурные горелки с дистанционными генераторами искры и УФ­сканерами.

Полностью автоматизированное многоступенчатое функционирование многофорсуночных, многоструйных горелок с естественной тягой обеспечивает надежное сокращение выбросов с объектов добычи нефти и газа, нефтеперерабатывающих, химических и нефтехимических заводов, а также других предприятий обрабатывающих и перерабатывающих отраслей промышленности.

Изобретение относится к оголовкам факельных установок для сжигания аварийных, постоянных и периодических выбросов горючих газов, может быть использовано в нефтехимической, нефтеперерабатывающей и других отраслях промышленности и позволяет повысить надежность и срок службы оголовка за счет устранения воздействия пламени на наружную поверхность основной горелки и ветрозащитного экрана. Оголовок факельной установки содержит основную горелку для сжигания сбрасываемого газа, дежурные горелки, ветрозащитное устройство, установленное соосно и образующее с ней кольцевой зазор, выполненное в виде цилиндра, открытого сверху и заглушенного снизу днищем, установленного на основной горелке, стенки цилиндра выполнены в виде обечайки и набора равномерно расположенных лопаток, установленных между обечайкой и днищем, лопатки выполнены в виде секторов цилиндра, причем наружные части лопаток касаются радиальных плоскостей. 2 ил.

Изобретение относится к оголовкам факельных установок для сжигания аварийных, постоянных и периодических выбросов горючих газов и может быть использовано в нефтехимической, нефтеперерабатывающей и других отраслях промышленности.

Известен оголовок факельной установки, содержащий основную горелку (цилиндрическую трубу), ветрозащитный экран, установленный в верхней части оголовка соосно с основной горелкой и образующий с ней кольцевой зазор, дежурные горелки (см. патент РФ 2095686, МПК F23D 14/38, опубл. 11.10.1997 г.) (аналог).

Данный оголовок работает следующим образом. Сжигаемый газ поступает в основную горелку в виде цилиндрической трубы и при выходе поджигается дежурными горелками. Ветрозащитный экран удерживает пламя в вертикальном положении. Однако этот ветрозащитный экран не защищает наружную поверхность основной горелки от воздействия пламени при боковом ветре. Это объясняется тем, что при боковом ветре с подветренной стороны оголовка образуется зона пониженного давления с отрывным рециркуляционным течением воздуха, в которую засасывается пламя вниз через кольцевой зазор. В результате теплового воздействия пламени снижается надежность и срок службы факельного оголовка.

Указанный недостаток частично устранен в факельных установках, описанных в каталоге промышленной организации «Генерация» стр.4 (см. сайт ПГ «Генерация» www.generation.ru) (прототип).

В этих установках оголовок содержит основную горелку в виде цилиндрической трубы, снаружи которой установлен соосно цилиндроконический ветрозащитный экран и дежурные горелки. Конический участок ветрозащитного экрана размещен в верхней части экрана и перекрывает кольцевой зазор между цилиндрической трубой и ветрозащитным экраном.

Принцип работы такого оголовка заключается в следующем. Сжигаемый газ поступает в основную цилиндрическую горелку оголовка и при выходе поджигается дежурными горелками. Цилиндрический ветрозащитный экран защищает наружную поверхность основной горелки от воздействия пламени при боковом ветре. Однако в этом случае тепловому воздействию подвергается наружная поверхность цилиндрического ветрозащитного экрана в результате опускания пламени с подветренной стороны в зону пониженного давления и рециркуляционного течения за экраном. Это приводит к тепловому воздействию на экран, снижает надежность и срок службы оголовка, требуется периодическая замена ветрозащитного экрана.

Техническим результатом предлагаемого изобретения является повышение надежности и увеличение срока службы оголовка путем устранения воздействия пламени при боковом ветре на наружные поверхности основной горелки и ветрозащитного экрана.

Для достижения указанной цели оголовок факельной установки содержит, как и наиболее близкий к ней прототип, основную горелку с установленным на ней соосно ветрозащитным устройством, образующим с ней (горелкой) кольцевой зазор, и дежурные горелки.

В отличие от известного оголовка ветрозащитный экран выполнен в виде цилиндра, открытого сверху и заглушенного снизу днищем, установленным на основной горелке, стенки цилиндра выполнены в виде обечайки, установленной сверху, и набора равномерно расположенных лопаток, установленных между обечайкой и днищем. Лопатки выполнены в виде секторов цилиндра, наружные части лопаток касаются радиальных плоскостей.

На фиг.1 представлен продольный разрез оголовка факельной установки, на фиг.2 - разрез А-А фиг.1.

Оголовок содержит основную горелку 1 и установленный на ней соосно ветрозащитный экран, образующий с ней кольцевой зазор 2 и дежурные горелки 3. Ветрозащитное устройство выполнено в виде цилиндра, открытого сверху и заглушенного снизу днищем 4. Стенки цилиндра выполнены в виде обечайки 5, установленной сверху, и набора равномерно расположенных лопаток 6. Лопатки выполнены в виде секторов цилиндра, наружные части лопаток касаются радиальных плоскостей 7.

Предлагаемый оголовок работает следующим образом.

Сжигаемый газ поступает в основную горелку 1 оголовка и при выходе поджигается дежурными горелками 3. При боковом ветре с наветренной стороны поток ветра поступает через зазоры между лопатками 6 внутрь ветрозащитного устройства в кольцевой зазор 2, приобретая вращательное движение. На подветренную сторону через зазор между лопатками 6 может выйти только небольшая часть поступившего воздуха, т.к. для выхода вращающемуся потоку воздуха необходимо изменить направление почти на противоположное, а это связано с преодолением большого гидравлического сопротивления. Чтобы создать такое движение воздуха в кольцевом зазоре 2, лопатки 6 установлены так, что обеспечивается касание их наружных частей и радиальных поверхностей 7, а внутренние части направлены тангенциально. Глухое днище 4 исключает движение воздуха из зазора 2 вниз. Все это приводит к движению воздуха вверх, что предотвращает опускание пламени и его воздействие на конструкцию оголовка. Обечайка 5 защищает пламя основной горелки 1 и дежурных горелок 3 от воздействия порывов ветра.

Оголовок факельной установки, содержащий основную горелку для сжигания сбрасываемого газа, дежурные горелки и ветрозащитное устройство, установленное соосно и образующее с ней кольцевой зазор, выполненное в виде цилиндра, открытого сверху и заглушенного снизу днищем, установленного на основной горелке, стенки цилиндра выполнены в виде обечайки и набора равномерно расположенных лопаток, установленных между обечайкой и днищем, лопатки выполнены в виде секторов цилиндра, причем наружные части лопаток касаются радиальных плоскостей.

УТВЕРЖДЕНЫ

Госгортехнадзором

ПРАВИЛА
УСТРОЙСТВА И БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ
ФАКЕЛЬНЫХ СИСТЕМ

ПБ 09-12-92

Редакционная коллегия: Е. А. Малов, Э. С. Стародубцев, А. А. Шаталов, Р. А. Стандрик, А. И. Эльнатанов, А. В. Куликов

Настоящие Правила подготовлены на основе Правил устройства и безопасной эксплуатации факельных систем, утвержденных Госпроматомнадзором СССР 3 декабря 1991 г., с внесением ряда дополнений и изменений.

При подготовке Правил учтен передовой опыт работы отечественных предприятий и зарубежных фирм в области обеспечения безопасной эксплуатации факельных систем.

Правила распространяются на предприятия и организации химической, нефтехимической, нефтеперерабатывающей отраслей промышленности независимо от форм собственности.

С введением в действие настоящих Правил считать утратившими силу Правила устройства и безопасной эксплуатации факельных систем, утвержденные в 1984 г. (ПУ и БЭФ-84).

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Факельная система предназначена для сброса и последующего сжигания горючих газов и паров в случаях:

срабатывания устройств аварийного сброса, предохранительных клапанов, гидрозатворов, ручного стравливания, а также освобождения технологических блоков от газов и паров в аварийных ситуациях автоматически или с применением дистанционно управляемой запорной арматуры и др.;

постоянных, предусмотренных технологическим регламентом сдувках;

периодических сбросов газов и паров, пуска, наладки и остановки технологических объектов.

Термины, употребляемые в настоящих Правилах, и их определения приведены в прил. .

1.2. Проектирование, строительство, реконструкция и эксплуатация факельных систем взрывопожароопасных и взрывоопасных производств, подконтрольных Госгортехнадзору России, должны проводиться в соответствии с требованиями строительных норм и правил, Общих правил взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств, Правил устройства и безопасной эксплуатации сосудов, работающих под давлением, Правил устройства и безопасной эксплуатации трубопроводов для горючих, токсичных и сжиженных газов, Инструкции по устройству молниезащиты зданий и сооружений и настоящих Правил.

Порядок и сроки приведения действующих факельных систем в соответствие с требованиями настоящих Правил определяются руководителями предприятий по согласованию с органами Госгортехнадзора России.

1.3. До приведения факельных систем в соответствие с требованиями настоящих Правил предприятиями совместно с проектными организациями должны быть разработаны и утверждены в установленном порядке мероприятия по повышению безопасности действующих факельных систем, согласованные с органами Госгортехнадзора России.

1.4. На предприятиях, эксплуатирующих факельные системы, должны быть составлены и утверждены в установленном порядке инструкции по их безопасной эксплуатации.

Указанные инструкции подлежат пересмотру раз в пять лет. При необходимости внесения дополнений в инструкции, а также в случае изменений в схеме или режиме работы они должны быть пересмотрены до истечения срока их действия.

1.5. Ввод в эксплуатацию вновь сооружаемых факельных систем с отступлением от настоящих Правил, а также без инструкций по безопасной эксплуатации запрещается.

В обоснованных случаях отступления от Правил согласовываются с Госгортехнадзором России в установленном порядке.

1.6. Для контроля за работой факельных систем приказом (распоряжением) по предприятию, производству, цеху, где эксплуатируются эти системы, из числа инженерно-технических работников назначаются ответственные лица, прошедшие проверку знаний настоящих Правил.

1.7. Электроприемники факельных систем (устройства контроля пламени, запальные устройства и средства КИП) по надежности электроснабжения относятся к потребителям первой категории.

2. ВИДЫ СБРОСОВ И ТРЕБОВАНИЯ К НИМ

2.1. При проектировании технологических процессов в необходимых случаях следует предусматривать поблочное освобождение аппаратуры и трубопроводов от взрывоопасных газов и паров с соответствующим автоматическим по заданной программе или дистанционным управлением отсекающими устройствами, прекращающими поступление газов и паров в аварийный блок.

2.2. Сбросы горючих газов и паров, разделяющиеся на постоянные, периодические и аварийные, для сжигания или сбора и последующего использования следует направлять в факельные системы:

общую (при условии совместимости сбросов);

отдельную;

специальную.

Принципиальные схемы сброса газов и паров приведены в прил. и .

2.3. По каждому источнику сброса газов и паров, направляемых в факельные системы, должны быть определены возможные их составы и параметры (температура, давление, плотность, расход, продолжительность сброса, а также параметры максимального, среднего и минимального суммарного сбросов с объекта).

2.4. Для предупреждения образования в факельной системе взрывоопасной смеси следует использовать продувочный газ - топливный или природный, инертные газы, в том числе газы, получаемые на технологических установках и используемые в качестве инертных газов.

Принципиальная схема подачи продувочного газа приведена в прил. .

2.5. Содержание кислорода в продувочных и сбрасываемых газах и парах, в том числе в газах сложного состава, не должно превышать 50 % минимального взрывоопасного содержания кислорода в возможной смеси с горючим.

2.6. При сбросах водорода, ацетилена, этилена и окиси углерода и смесей этих быстрогорящих газов содержание кислорода в них должно составлять не более 2 % объемных.

2.7. Запрещается направлять в факельную систему вещества, взаимодействие которых может привести к взрыву (например, окислитель и восстановитель).

2.8. В газах и парах, сбрасываемых в общую и отдельную факельные системы, не должно быть капельной жидкости и твердых частиц. Для этих целей в границах технологической установки необходимо устанавливать сепараторы.

В факельном коллекторе и подводящих трубопроводах температура газов и паров должна быть такой, при которой исключена возможность кристаллизации продуктов сброса.

2.9. Для факельной системы с установкой сбора углеводородных газов и паров температура сбрасываемых газов и паров на выходе из технологической установки должна быть не выше 200 и не ниже –30 °С, а на расстоянии 150-200 м перед входом в газгольдер - не более 60 °С.

2.10. Запрещается использовать в качестве топлива сбрасываемые углеводородные газы и пары с объемным содержанием в них инертных газов более 5 %, веществ I и II классов опасности (кроме бензола) - более 1 %, сероводорода - более 8 %.

Сбросы, при сжигании которых в продуктах сгорания образуются или сохраняются вредные вещества I и II классов опасности, следует направлять в специальные емкости для дальнейшей утилизации и переработки.

Отступления от требований настоящего пункта могут допускаться только при соответствующем обосновании и по согласованию с органами Госгортехнадзора России.

2.11. Не допускаются постоянные и периодические сбросы газов и паров в общие факельные системы, в которые направляются аварийные сбросы, если совмещение указанных сбросов может привести к повышению давления в системе до величины, препятствующей нормальной работе предохранительных клапанов и других противоаварийных устройств.

2.12. Потери давления в факельных системах при максимальном сбросе не должны превышать:

для систем, в которые направляются аварийные сбросы газов и паров, - 0,02 МПа на технологической установке и 0,08 МПа на участке от технологической установки до выхода из оголовка факельного ствола;

для систем с установкой сбора углеводородных газов и паров - 0,05 МПа от технологической установки до выхода из оголовка факельного ствола.

Для отдельных и специальных факельных систем потери давления не ограничиваются и определяются условиями безопасной работы подключенных к ним аппаратов.

2.13. Горючие газы и пары, сбрасываемые с технологических аппаратов через гидрозатворы, рассчитанные на давление меньшее, чем давление в факельном коллекторе, следует направлять в специальную факельную систему или по специальному факельному трубопроводу, не связанному с коллектором от других предохранительных устройств аварийного сброса, постоянных и периодических сбросов.

Специальный трубопровод через отдельный сепаратор необходимо подключать непосредственно к стволу факельной установки.

2.14. В обоснованных случаях допускается установка запорной арматуры после гидрозатворов на месте врезки в общую факельную систему (при исключении возможности случайного ее закрытия). Одновременно предусматриваются дополнительные меры безопасности, в том числе снятие штурвала запорной арматуры, опломбирование ее в открытом состоянии, установка на ней специальных кожухов, вывод сигнала о положении арматуры на пульт управления.

Тип запорной арматуры определяется проектной организацией.

3. СБРОСЫ ОТ ПРЕДОХРАНИТЕЛЬНЫХ КЛАПАНОВ

3.1. Сбросы от предохранительных клапанов направляются в факельные системы.

3.2. Сбросы газов и паров от предохранительных клапанов, установленных на сосудах и аппаратах, работающих со средами, не относящимися к взрывоопасным и вредным веществам, а также сброс легких газов разрешается направлять через сбросную трубу в атмосферу.

Устройство сбросных труб и условия сброса должны обеспечивать эффективное рассеивание сбрасываемых газов и паров, исключающее образование взрывоопасных концентраций в зоне размещения технологического оборудования, зданий и сооружений. Расчет концентраций горючего газа при сбросе через сбросную трубу приведен в прил. . При этом следует предусматривать устройства, предотвращающие попадание жидкости в сбросные трубы и ее скопление.

Примечания.

1. К легким газам относятся метан, природный газ и водородсодержащий газ с плотностью не более 0,8 по отношению к плотности воздуха.

2. В случае возможности изменения состава сбрасываемого газа, приводящего к увеличению его плотности более 0,8 по отношению к плотности воздуха, сброс газа в атмосферу не допускается.

3. При организации сбросов в атмосферу следует руководствоваться Методикой расчета концентрации в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий, и санитарными нормами.

3.3. Сбросы от предохранительных клапанов горючих газов и паров, содержащих вещества I и II классов опасности в количествах не более 1 % объемных (сероводород - до 8 % объемных), допускается направлять в общую факельную систему.

3.4. Сбросы от предохранительных клапанов газов и паров, содержащих вещества I и II классов опасности в количествах более 1 % объемных, должны подвергаться очистке и обезвреживанию (нейтрализация, поглощение, разложение, сжигание и т.п.). Для сжигания такие сбросы направляются в отдельную или специальную факельную систему.

3.5. Горючие газы и пары от предохранительных клапанов, установленных на складских емкостях, предназначенных для хранения сжиженных углеводородных газов и легковоспламеняющихся жидкостей, должны сбрасываться в отдельную или специальную факельную систему.

В обоснованных случаях такие сбросы допускается направлять для сжигания в факельный ствол общей факельной системы.

4. КОЛЛЕКТОРЫ, ТРУБОПРОВОДЫ, НАСОСЫ

4.1. Для отдельных и специальных факельных систем следует предусматривать один факельный коллектор и одну факельную установку.

Общие факельные системы должны иметь два факельных коллектора и две факельные установки для обеспечения безостановочной работы.

При сбросах в общую факельную систему газов, паров и их смесей, не вызывающих коррозии более 0,1 мм в год, допускается обеспечивать факельные установки одним коллектором.

4.2. На общих факельных системах в местах разветвления трубопроводов с целью отключения от факельных систем технологических установок, складов, переключения сепараторов, коллекторов и факельных стволов возможно размещение в горизонтальном положении запорных устройств, опломбированных в открытом состоянии.

4.3. Факельные коллекторы и трубопроводы должны быть минимальной длины и иметь минимальное число поворотов, их необходимо прокладывать над землей (на опорах и эстакадах).

4.4. На факельных коллекторах и трубопроводах запрещается устанавливать сальниковые компенсаторы.

4.5. Тепловая компенсация факельных коллекторов и трубопроводов должна рассчитываться с учетом максимальной и минимальной температур сбрасываемых газов и паров, максимальной температуры пара для пропарки, а также температуры обогревающей среды для обогреваемых коллекторов и средней температуры наиболее холодной пятидневки.

4.6. Коллекторы и трубопроводы факельных систем должны иметь, при необходимости, тепловую изоляцию и (или) на них должны быть установлены обогревающие спутники для предотвращения конденсации и кристаллизации веществ в факельных системах.

4.7. На факельных установках, предназначенных для сжигания горячих газов и паров, следует применять сепаратор с постоянным отводом жидкости.

4.8. Факельные коллекторы и трубопроводы необходимо прокладывать с уклоном в сторону сепараторов не менее 0,003. Если невозможно выдерживать указанный уклон, в низших точках факельных коллекторов и трубопроводов размещают устройства для отвода конденсата. Конструкция сборников конденсата должна исключать унос жидкости и предусматривать их тепловую изоляцию и наружный обогрев. Сборники конденсата должны опорожняться автоматически, а в обоснованных случаях - дистанционно из операторной. Для откачки конденсата из сепараторов и сборников применяются центробежные насосы.

4.9. Врезка цеховых трубопроводов в факельный коллектор должна производиться сверху в целях исключения заполнения их жидкостью.

4.10. При незначительном содержании конденсата в сепараторах на факельных установках, предназначенных для сжигания паров низкокипящих жидкостей (включая пропан, пропилен, аммиак и аммиаксодержащие газы), удалять жидкость из сепаратора разрешается за счет подачи пара или горячей воды в наружный змеевик, обогревающий сепаратор, при этом необходимо исключить возможность повышения давления в емкости выше расчетного.

4.11. При наличии в сбросных газах твердых или смолистых осадков следует устанавливать два параллельных сепаратора. При малом содержании примесей сепаратор допускается оснащать байпасной линией с системой сблокированных задвижек «закрыто-открыто» и быстросъемными заглушками, обеспечивающими постоянный проток газа и возможность чистки сепаратора.

4.12. В зависимости от места установки необходимо применять насосы, изготовленные по 1 или 2 категориям размещения в соответствии с .

4.13. Установка факельного сепаратора и насоса по отношению друг к другу осуществляется исходя из условия обеспечения заполнения насоса конденсатом при его поступлении в сепаратор и исключения возникновения кавитации при работе насоса.

4.14. Всасывающий трубопровод должен иметь минимальную длину и уклон в сторону насоса, в нем не должно быть застойных зон.

Горизонтальные участки всасывающих трубопроводов следует располагать внизу (у насосов). Необходимо избегать горизонтальных участков непосредственно после сепаратора, для чего выход всасывающего трубопровода из нижнего штуцера сепаратора к насосу следует размещать вертикально вниз.

4.15. Диаметр всасывающего трубопровода определяется по максимальной производительности насоса, принимаемой по графической характеристике.

4.16. Все трубопроводы и арматура обвязки насосов во избежание замерзания в холодное время года должны обогреваться и иметь тепловую изоляцию.

4.17. Включение и выключение насосов для откачки конденсата из сборников и сепараторов должны быть как автоматическими, так и с места их установки (выполняется в соответствии со схемой прил. ).

при постоянных и периодических сбросах - на сумму периодических (с коэффициентом 0,2) и постоянных сбросов от всех подключенных технологических установок, но не менее чем на сумму постоянных сбросов и максимального периодического сброса (с коэффициентом 1,2) от установки с наибольшей величиной этого сброса;

при аварийных сбросах - на сумму аварийных сбросов (с коэффициентом 0,25) от всех подключенных установок, но не менее чем на величину аварийного сброса (с коэффициентом 1,5) от установки с наибольшей величиной этого сброса.

Примечание.

Допускается рассчитывать пропускную способность на сумму аварийных сбросовот всех подключенных технологических установок; при аварийных, постоянных и периодических сбросах - на сумму всех видов сбросов, рассчитанных в порядке, установленном настоящим пунктом.

4.20. Площадь проходного сечения задвижек для аварийного сброса с ручным или дистанционным включением привода должна соответствовать пропускной способности факельного коллектора на выходе с установки.

4.21. На трубопроводах сбрасываемых газов и паров фланцевые соединения устанавливаются только в местах присоединения арматуры, контрольно-измерительных приборов, а для монтажных соединений - в местах, где сварка невыполнима.

Каждый сварной шов факельного коллектора (трубопровода) и факельного ствола проверяют неразрушающим методом, обеспечивающим эффективный контроль качества сварного шва.

4.22. На коллекторе перед факельным стволом или на факельном стволе должно быть фланцевое соединение для установки заглушки при проведении испытаний на прочность.

4.23. Для продувки технологических установок и цеховых факельных трубопроводов азотом или воздухом при пуске или остановке на ремонт в обоснованных случаях на выходе с технологической установки устанавливается свеча с отключающей арматурой.

4.24. Во избежание образования взрывоопасной смеси необходимо предусматривать непрерывную подачу продувочного (топливного или инертного) газа в начало факельного коллектора. В случае прекращения подачи топливного газа должна быть обеспечена автоматическая подача инертного газа. Количество продувочного газа определяется в соответствии с п. настоящих Правил.

5. ФАКЕЛЬНАЯ УСТАНОВКА

5.1. При работе факельной установки необходимо обеспечивать стабильное горение в широком интервале расходов газов и паров, бездымное сжигание постоянных и периодических сбросов, а также безопасную плотность теплового потока и предотвращение попадания воздуха через верхний срез факельного ствола.

5.2. Конструкция факельной установки должна предусматривать наличие факельного ствола, оснащенного оголовком и газовым затвором, средств контроля и автоматизации, дистанционного электрозапального устройства, подводящих трубопроводов топливного газа и горючей смеси, дежурных горелок с запальниками.

При необходимости факельная установка оснащается сепаратором, гидрозатвором, огнепреградителем (при сбросе ацетилена), насосами и устройством для отвода конденсата.

Примечания.

1. В обоснованных случаях для сжигания газов и паров допускается применение специальных наземных факельных установок без факельного ствола.

2. При наличии в сбросных газах и парах твердых и смолистых веществ, которые, отлагаясь, уменьшают площадь проходного сечения газового затвора, последний не устанавливается.

5.3. Диаметр верхнего среза факельного оголовка для обеспечения стабильного (без срыва) горения следует рассчитывать по максимальной скорости газов и паров, которая не должна превышать 0,5 скорости звука в сбросном газе. При сжигании газов и паров с плотностью более 0,8 относительно плотности воздуха скорость сброса не должна превышать 120 м/с.

5.4. Для полноты сжигания сбрасываемых углеводородных газов и паров (за исключением природного и некоптящих газов) следует предусматривать подачу водяного пара, воздуха или воды. Количество пара определяется расчетом исходя из условия обеспечения бездымного сжигания постоянных сбросов.

Если отношение скорости сброса к скорости звука составляет более 0,2, то подача пара не требуется.

5.5. Дежурные горелки с запальниками следует устанавливать на факельном оголовке. Число горелок определяется в зависимости от диаметра факельного оголовка в соответствии с данными, приведенными ниже

Диаметр факельного оголовка, мм

Число горелок, шт.

Не менее 2

Не менее 3

Не менее 4

Не менее 5

5.6. К факельному стволу должен быть обеспечен подвод топливного газа для дежурных горелок, а к устройству зажигания пламени - топливного газа и воздуха для приготовления запальной смеси. Для исключения конденсации паров воды и ее замерзания в трубопроводах в холодное время года топливный газ необходимо осушать или подавать по обогреваемому трубопроводу. Топливный газ не должен содержать механических примесей.

не менее 0,05 м/с - с газовым затвором;

не менее 0,9 м/с - без газового затвора при плотности продувочного (топливного) газа 0,7 кг/м 3 и более;

не менее 0,7 м/с - без газового затвора при инертном продувочном газе (азоте).

Примечание.

В факельных системах, не оборудованных газовыми затворами, запрещается использовать в качестве продувочного газа топливный газ, плотность которого менее 0,7 кг/м 3 .

10.3. Перед прекращением сброса горючих газов и паров, нагретых до высокой температуры, необходимо обеспечить дополнительную подачу продувочного газа с целью предотвращения образования вакуума в факельной системе при охлаждении или конденсации.

10.4. Перед проведением ремонтных работ факельная система должна быть отсоединена стандартными заглушками от технологических установок и продута азотом (при необходимости пропарена) до полного удаления горючих веществ с последующей продувкой воздухом до объемного содержания кислорода не менее 18 % и содержания вредных веществ не более ПДК.

Конкретные мероприятия по обеспечению безопасности ремонтных работ должны разрабатываться в соответствии с руководящими материалами.

10.5. Ремонт факельных оголовков при расположении в общей зоне ограждения нескольких факельных стволов следует проводить в теплозащитном костюме.

10.6. Запрещается во время грозы находиться на площадке факельной установки и прикасаться к металлическим частям и трубам.

10.7. В зоне ограждения факельного ствола запрещается находиться лицам, не связанным с эксплуатацией факельных систем.

10.8. Факельные установки должны быть обеспечены первичными средствами пожаротушения в соответствии с действующими нормами.

Приложение 1

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

АВАРИЙНЫЕ СБРОСЫ - горючие газы и пары, поступающие в факельную систему при срабатывании рабочих предохранительных клапанов и других устройств аварийного сброса. Величина аварийного сброса принимается равной максимально возможному сбросу из технологической установки.

ГАЗОВЫЙ ЗАТВОР - устройство для предотвращения попадания воздуха в факельную систему через верхний срез факельного ствола и снижения расхода продувочного газа.

МИНИМАЛЬНОЕ ВЗРЫВООПАСНОЕ СОДЕРЖАНИЕ КИСЛОРОДА - концентрация кислорода в горючей смеси, ниже которой воспламенение и горение смеси становятся невозможными при любой концентрации горючего в смеси.

НАЧАЛО ФАКЕЛЬНОЙ СИСТЕМЫ - участки факельных трубопроводов (коллекторов), непосредственно примыкающие к границе технологической установки.

ОБЩАЯ ФАКЕЛЬНАЯ СИСТЕМА - факельная система, которая обслуживает группу технологически не связанных производств (установок).

ОТДЕЛЬНАЯ ФАКЕЛЬНАЯ СИСТЕМА - система, обслуживающая одно производство, один цех, одну технологическую установку, один склад или несколько технологических блоков, которые связаны единой технологией в одну технологическую нитку и могут останавливаться одновременно (один источник сброса).

ПЕРИОДИЧЕСКИЕ СБРОСЫ - горючие газы и пары, направляемые в факельную систему при пуске, остановке оборудования, отклонениях от технологического режима.

ПОСТОЯННЫЕ СБРОСЫ - горючие газы и пары, поступающие непрерывно от технологического оборудования и коммуникаций при нормальной их эксплуатации.

ПОСТОЯННЫЙ ОТВОД ЖИДКОСТИ - непрерывное ее удаление из сепаратора самотеком без использования насосов.

РАБОЧИЙ ПРЕДОХРАНИТЕЛЬНЫЙ КЛАПАН - клапан, установленный в соответствии с Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением, для предотвращения роста давления в аппарате.

РЕЗЕРВНЫЙ РАБОЧИЙ КЛАПАН - предохранительный клапан, установленный параллельно рабочему и включаемый в работу блокировочным устройством «закрыто-открыто».

СБРОСНАЯ ТРУБА - вертикальная труба для сброса газов и паров в атмосферу без сжигания.

СБРОСЫ (СБРОСНЫЕ ГАЗЫ И ПАРЫ) - отходящие от производства, цеха, технологической установки, склада или иного источника горючие газы и пары, которые не могут быть непосредственно использованы в данной технологии.

СВЕЧА - устройство для выпуска продувочного газа в атмосферу.

СПЕЦИАЛЬНАЯ ФАКЕЛЬНАЯ СИСТЕМА - система для сжигания газов и паров, которые по своим свойствам и параметрам не могут быть направлены в общую или отдельную факельную систему. Сбросы в этом случае имеют следующие особенности: сбрасываемые газы содержат вещества, склонные к разложению с выделением тепла; полимеризующиеся продукты, агрессивные вещества, механические примеси, уменьшающие пропускную способность трубопроводов; продукты, способные вступать в реакцию с другими веществами, направляемыми в факельную систему; сероводород в концентрациях более 8 %. Используется также, если давление в технологической установке не обеспечивает сброс в общую факельную систему и т.д.

СПЕЦИАЛЬНЫЙ ФАКЕЛЬНЫЙ ТРУБОПРОВОД - трубопровод для подачи сбросного газа к факельной установке (факельному оголовку) при особых условиях, не совпадающих с условиями в факельном коллекторе.

УСТАНОВКА СБОРА УГЛЕВОДОРОДНЫХ ГАЗОВ И ПАРОВ - совокупность устройств и сооружений, предназначенных для сбора и кратковременного хранения сбрасываемых газов общей факельной системы, возврата газа и конденсата на предприятие для дальнейшего использования.

ФАКЕЛЬНЫЙ КОЛЛЕКТОР - трубопровод для сбора и транспортировки сбросных газов и паров от нескольких источников сброса.

ФАКЕЛЬНЫЙ ОГОЛОВОК - устройство из жаропрочной стали с дежурными горелками и запальниками, оснащенное приспособлениями для подачи водяного пара, распыленной воды и воздуха.

ФАКЕЛЬНЫЙ СТВОЛ - вертикальная труба с оголовком и газовым затвором.

ФАКЕЛЬНЫЙ ТРУБОПРОВОД - трубопровод для подачи сбросных газов и паров от одного источника сброса.

ФАКЕЛЬНАЯ УСТАНОВКА - совокупность устройств, аппаратов, трубопроводов и сооружений для сжигания сбрасываемых газов и паров.

Приложение 2
(рекомендуемое)

Принципиальная схема сброса газов (паров) в факельную систему от предохранительных клапанов

1 - защищаемый аппарат; 2 - цеховой сепаратор; 3 - факельный сепаратор; 4 - факельный ствол; 5 - газовый затвор; 6 - блокировочное устройство «закрыто-открыто»; 7 - цеховой коллектор; 8 - факельный коллектор; 9 - продувочный газ; 10 - линия ручного сброса; 11 - граница цеха; 12 - сброс газов от ПК на др. аппаратах цеха; 13 - сброс газов от др. цехов производства

Приложение 3
(рекомендуемое)

Принципиальная схема сброса газов (паров) в факельную систему с постоянным отводом конденсата из сепаратора через гидрозатвор


1 - факельный коллектор; 2 - блокировочное устройство; 3 - факельный ствол; 4 - сепаратор (вариант А); 5 - сепаратор (вариант В); 6 - подача затворной жидкости; 7 - гидрозатвор; 8 - продувочный газ

Приложение 4
(рекомендуемое)

Принципиальная схема подачи продувочного газа в факельный коллектор


1 - подача продувочного (топливного) газа; 2 - факельный коллектор; 3 - источник сброса, наиболее удаленный от факельной установки; 4 - подача азота

Приложение 5
(рекомендуемое)

РАСЧЕТ
концентраций горючего газа при сбросе из предохранительного клапана через сбросную трубу

Расчет проведен для условий, когда выброс осуществляется горизонтально в течение длительного времени при наихудших метеоусловиях (штиль), а максимальная приземная концентрация газа не превышает 50 % нижнего предела распространения пламени (воспламенения). Для уменьшения приземной концентрации рекомендуется сбросной патрубок направлять вертикально вверх.

1. Величина приземной концентрации газа на различных расстояниях от предохранительного клапана определяется по формуле:

Г/м 3 ,

где М - количество сбрасываемого газа, г/с;

V - секундный объем сбрасываемого газа при нормальном давлении, м 3 /с;

d - диаметр сбросного патрубка, м;

Х - горизонтальное расстояние от сбросного патрубка до места, в котором определяется концентрация, м;

r , r в - плотность сбрасываемого газа и окружающего воздуха, кг/м 3 ;

h - высота сбросного патрубка, м.

2. Величина максимальной приземной концентрации газа определяется по формуле:

Г/м 3 .

3. Расстояние, на котором наблюдается максимальная приземная концентрация, составляет:

4. Минимальная высота выброса определяется по формуле:

где С нпв - концентрация нижнего предела распространения пламени, г/м 3 .

2. Опасной зоной считается круг радиусом Х м.

Приложение 6
(рекомендуемое)

Схема оснащения насосов для откачки углеводородов трубопроводами, контрольно-измерительными приборами и средствами автоматики


1 - рабочий насос; 2 - вход уплотняющей жидкости торцевого уплотнения вала рабочего насоса; 3 - вентиль возвратного трубопровода рабочего насоса; 4 - задвижка нагнетательного трубопровода рабочего насоса; 5 - минимальный уровень жидкой фазы в сепараторе; 6 - уровень начала откачки жидкой фазы из сепаратора; 7 - максимальный уровень жидкой фазы в сепараторе; 8 - перфорированная труба; 9 - задвижка нагнетательного трубопровода резервного насоса; 10 - вентиль возвратного трубопровода резервного насоса; 11 - резервный насос; 12 - вход уплотняющей жидкости торцевого уплотнения вала резервного насоса; 13 - задвижка всасывающего трубопровода резервного насоса; 14 - задвижка всасывающего трубопровода рабочего насоса

ОПИСАНИЕ РАБОТЫ НАСОСОВ

Ситуация 1

Сброс углеводородных газов в факельную систему не производится. Факельная система заполнена топливным или инертным газом. Факельный сепаратор и насосы жидкостью не заполнены. Задвижки (приложение - поз. 13 и 14), вентили (поз. 3 и 10) находятся в открытом положении. Задвижки (поз. 4 и 9) закрыты.

Ситуация 2

Происходит сброс углеводородных газов в факельную систему. В сепараторе появляется конденсат, который по всасывающему трубопроводу поступает в оба насоса и заполняет их. Отвод газовой фазы происходит из нагнетательных линий насосов в сепаратор по трубопроводу Ду 25 через дроссельную шайбу с отверстием в ней 10 мм.

Ситуация 3

В факельном сепараторе продолжается накопление жидкости. Жидкость достигает уровня откачки (1/4 высоты сепаратора). Автоматически включается рабочий насос. Открывается задвижка на нагнетании (приложение - поз. 4). Если уровень продолжает повышаться и достигает максимального уровня (1 / 2 высоты сепаратора), дается команда на включение резервного насоса и открывается задвижка (поз. 9) на линии нагнетания резервного насоса.

Ситуация 4

В результате откачки количество жидкости в сепараторе уменьшается до минимального уровня, который определяется временем остановки насоса. При достижении этого уровня насос (насосы) автоматически выключается и закрываются задвижки на нагнетании.

Приложение 7

РАСЧЕТ
плотности теплового потока от пламени, минимального расстояния и высоты факельного ствола

1. Обозначения и определения.

C pi , C vi - теплоемкости компонентов, Дж/(моль · К);

D - диаметр факельной трубы, м;

k - показатель адиабаты,

М - молекулярная масса, кг/(кг/кг/моль);

N i - молярная доля i -го компонента в смеси;

Т - температура газа, К ;

V - скорость истечения сбросного газа, м/с;

V в - скорость ветра на уровне центра плам ни, м/с,

При H + Z < 6 0,

При 60 < H + Z < 200;

V т - максимальная скорость ветра, м/с, определяемая по приложению 4 «Строительная климатология и геофизика».

V зв - скорость звука в сбрасываемом газе, м/с:

m - отношение скорости истечения к скорости звука в сбрасываемом газе, m = V / V зв .

(Постановление Госгортехнадзора РФ от 05.06.2003 N 56. Об утверждении Правил безопасности в нефтяной и газовой промышленности (Зарегистрировано в Минюсте РФ 20.06.2003 N 4812))

3.6.124. Установка и снятие заглушек должны регистрироваться в специальном журнале за подписью лиц, проводивших их установку и снятие, и проверяться лицами, ответственными за подготовку и проведение ремонта.

3.7. Требования к устройству и эксплуатации
факельных систем

3.7.1. Общие положения


3.7.1.1. Требования настоящего подраздела Правил безопасности распространяются на факельные системы объектов обустройства нефтяных, газовых и газоконденсатных месторождений.
3.7.1.2. Комплектность факельных систем, конструкция оборудования и оснастки, входящих в их состав, условия эксплуатации должны соответствовать требованиям, установленным Госгортехнадзором России.
Для дожимных насосных станций по согласованию с территориальными органами Госгортехнадзора России допускается упрощенная факельная установка для аварийного сжигания газа при ремонтных работах.
3.7.1.3. Проектирование, строительство и реконструкция факельных систем должны проводиться специализированными организациями.
3.7.1.4. Электроприемники факельных систем (устройства контроля пламени, запальные устройства, системы КИПиА) по надежности электроснабжения относятся к потребителям первой категории.
3.7.1.5. Запрещается направлять на установки сброса углеводородные газы и пары при объемной доле в них сероводорода более 8%.

3.7.2. Устройство факельных установок


3.7.2.1. Конструкция факельной установки должна обеспечивать стабильное горение в широком интервале расходов газов и паров, предотвращать попадание воздуха через верхний срез факельного ствола.
3.1.2.2. В составе факельной установки должны быть предусмотрены:
- - факельный ствол;

- - средства контроля и автоматизации;

- - подводящие трубопроводы газа на запал и горючей смеси;
- - дежурные горелки с запальниками;
- - устройство для отбора проб.
В составе упрощенной факельной установки для дожимных насосных станций должны быть предусмотрены:
- - факельный ствол;
- - оголовок с газовым затвором;
- - дистанционное электрозапальное устройство;
- - подводящие трубопроводы газа;
- - устройства для отбора проб;
- - средства контроля и автоматики.
3.7.2.3. Материалы факельного оголовка, дежурных горелок, обвязочных трубопроводов, деталей крепления следует выбирать с учетом их возможного нагрева от теплового излучения факела.
Обвязочные трубопроводы на участке факельного ствола необходимо выполнять из бесшовных жаропрочных труб.
3.7.2.4. Розжиг факела должен быть автоматическим, а также дистанционно управляемым.
3.7.2.5. Факельная установка должна быть оснащена устройством регулирования давления топливного газа, подаваемого на дежурные горелки.
3.7.2.6. Высота факельного ствола определяется расчетом по плотности теплового потока и с соблюдением условия исключения возможности загрязнения окружающей территории продуктами сгорания.
3.7.2.7. Конструкция крепления растяжек факельного ствола должна обеспечить их защиту от возможного повреждения, в том числе транспортными средствами.
3.7.2.8. Устройство лестниц и площадок должно обеспечивать удобство и безопасность при монтаже и ремонте факельного оголовка и другого оборудования, расположенного на разной высоте факельного ствола.

3.7.3. Требования к территории и сооружениям


3.7.3.1. Факельную установку следует размещать с учетом розы ветров, минимальной длины факельных трубопроводов и с учетом допустимой плотности теплового потока.
3.7.3.2. Расстояние между факельными стволами определяется из условия возможности производства ремонтных работ на одном из них при работающем соседнем факеле.
3.7.3.3. Расстояние между факельным стволом и зданиями, сооружениями объектов обустройства следует определять, исходя из допустимой плотности теплового потока и противопожарных норм.
3.7.3.4. Территория вокруг факельного ствола, а также всех сооружений факельной установки должна быть спланирована, к ним должен быть обеспечен подъезд.
3.7.3.5. Территория вокруг факельного ствола в радиусе его высоты, но не менее 30 м ограждается и обозначается. В ограждении должны быть оборудованы проходы для персонала и ворота для проезда транспорта. Количество проходов должно равняться числу факельных стволов, причем путь к каждому стволу должен быть кратчайшим.
3.7.3.6. При размещении факельных систем в малообжитых районах допускается вместо ограждения выполнять обвалование высотой не менее 1 м и шириной по верху не менее 0,5 м.
3.7.3.7. Все оборудование факельной установки, кроме оборудования факельного ствола, должно размещаться вне ограждения (обвалования).
3.7.3.8. Не допускается устройство колодцев, приямков и других углублений в пределах огражденной территории.

3.7.4. Требования к оборудованию, коммуникациям,
средствам автоматизации


3.7.4.1. Для отдельных факельных систем следует предусматривать один факельный коллектор и одну факельную установку.
Общие факельные системы должны иметь два факельных коллектора и две факельные установки для обеспечения безостановочной работы.
Специальные факельные системы не должны иметь связи с отдельными и общими факельными системами.
3.7.4.2. При сбросах в общую факельную систему газов, паров и их смесей, не вызывающих коррозии более 0,1 мм в год, допускается обеспечивать факельные установки одним коллектором.

Что еще почитать