Процессы лежащие в основе регенерации. Регенерация

Содержание статьи

РЕГЕНЕРАЦИЯ, восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Регенерация обычно происходит в случае повреждения или утраты какого-нибудь органа или части организма. Однако помимо этого в каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи. Птицы периодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такую регенерацию, обычно не связанную с повреждениями или утратой, называют физиологической. Регенерацию, происходящую после повреждения или утраты какой-либо части тела, называют репаративной. Здесь мы рассмотрим только репаративную регенерацию.

Репаративная регенерация может быть типичной или атипичной. При типичной регенерации утраченная часть замещается путем развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (аутотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага. При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.

РЕГЕНЕРАЦИЯ У ЖИВОТНЫХ

Способность к регенерации широко распространена среди животных. Вообще говоря, низшие животные чаще способны к регенерации, чем более сложные высокоорганизованные формы. Так, среди беспозвоночных гораздо больше видов, способных восстанавливать утраченные органы, чем среди позвоночных, но только у некоторых из них возможна регенерация целой особи из небольшого ее фрагмента. Тем не менее общее правило о снижении способности к регенерации с повышением сложности организма нельзя считать абсолютным. Такие примитивные животные, как гребневики и коловратки, практически не способны к регенерации, а у гораздо более сложных ракообразных и амфибий эта способность хорошо выражена; известны и другие исключения. Некоторые близкородственные животные сильно различаются в этом отношении. Так, у дождевого червя из небольшого кусочка тела может полностью регенерировать новая особь, тогда как пиявки неспособны восстановить один утраченный орган. У хвостатых амфибий на месте ампутированной конечности образуется новая, а у лягушки культя просто заживает и никакого нового роста не происходит.

Многие беспозвоночные способны к регенерации значительной части тела. У губок, гидроидных полипов, плоских, ленточных и кольчатых червей, мшанок, иглокожих и оболочников из небольшого фрагмента тела может регенерировать целый организм. Особенно примечательна способность к регенерации у губок. Если тело взрослой губки продавить через сетчатую ткань, то все клетки отделятся друг от друга, как просеянные сквозь сито. Если затем поместить все эти отдельные клетки в воду и осторожно, тщательно перемешать, полностью разрушив все связи между ними, то спустя некоторое время они начинают постепенно сближаться и воссоединяются, образуя целую губку, сходную с прежней. В этом участвует своего рода «узнавание» на клеточном уровне, о чем свидетельствует следующий эксперимент. Губки трех разных видов разделяли описанным способом на отдельные клетки и как следует перемешивали. При этом обнаружилось, что клетки каждого вида способны «узнавать» в общей массе клетки своего вида и воссоединяются только с ними, так что в результате образовалась не одна, а три новых губки, подобные трем исходным.

Ленточный червь, длина которого во много раз превышает его ширину, способен воссоздать целую особь из любого участка своего тела. Теоретически возможно, разрезав одного червя на 200 000 кусочков, получить из него в результате регенерации 200 000 новых червей. Из одного луча морской звезды может регенерировать целая звезда.

Моллюски, членистоногие и позвоночные не способны регенерировать целую особь из одного фрагмента, однако у многих из них происходит восстановление утраченного органа. Некоторые в случае необходимости прибегают к аутотомии. Птицы и млекопитающие как эволюционно наиболее продвинутые животные меньше других способны к регенерации. У птиц возможно замещение перьев и некоторых частей клюва. Млекопитающие могут восстанавливать покров, когти и частично печень; они способны также к заживлению ран, а олени – к отращиванию новых рогов взамен сброшенных.

Процессы регенерации.

В регенерации у животных участвуют два процесса: эпиморфоз и морфаллаксис. При эпиморфической регенерации утраченная часть тела восстанавливается за счет активности недифференцированных клеток. Эти клетки, похожие на эмбриональные, накапливаются под пораненным эпидермисом у поверхности разреза, где они образуют зачаток, или бластему. Клетки бластемы постепенно размножаются и превращаются в ткани нового органа или части тела. При морфаллаксисе другие ткани тела или органа непосредственно преобразуются в структуры недостающей части. У гидроидных полипов регенерация происходит главным образом путем морфаллаксиса, а у планарий в ней одновременно участвуют и эпиморфоз, и морфаллаксис.

Регенерация путем образования бластемы широко распространена у беспозвоночных и играет особенно важную роль в регенерации органов у амфибий. Существует две теории происхождения бластемных клеток: 1) клетки бластемы происходят из «резервных клеток», т.е. клеток, оставшихся неиспользованными в процессе эмбрионального развития и распределившихся по разным органам тела; 2) ткани, целостность которых была нарушена при ампутации, «дедифференцируются» в области разреза, т.е. дезинтегрируются и превращаются в отдельные бластемные клетки. Таким образом, согласно теории «резервных клеток», бластема образуется из клеток, остававшихся эмбриональными, которые мигрируют из разных участков тела и скапливаются у поверхности разреза, а согласно теории «дедифференцированной ткани», бластемные клетки происходят из клеток поврежденных тканей.

В подтверждение как одной, так и другой теории имеется достаточно данных. Например, у планарий резервные клетки более чувствительны к рентгеновским лучам, чем клетки дифференцированной ткани; поэтому их можно разрушить, строго дозируя облучение, чтобы не повредить нормальные ткани планарии. Облученные таким образом особи выживают, но утрачивают способность к регенерации. Однако если только переднюю половину тела планарии подвергнуть облучению, а затем разрезать, то регенерация происходит, хотя и с некоторой задержкой. Задержка свидетельствует о том, что бластема образуется из резервных клеток, мигрирующих на поверхность разреза из необлученной половины тела. Миграцию этих резервных клеток по облученной части тела можно наблюдать под микроскопом.

Сходные эксперименты показали, что у тритона регенерация конечностей происходит за счет бластемных клеток местного происхождения, т.е. за счет дедифференцировки поврежденных тканей культи. Если, например, облучить всю личинку тритона, за исключением, скажем, правой передней конечности, а затем ампутировать эту конечность на уровне предплечья, то у животного отрастает новая передняя конечность. Очевидно, что необходимые для этого бластемные клетки поступают именно из культи передней конечности, так как все остальное тело подверглось облучению. Более того, регенерация происходит даже в том случае, если облучают всю личинку, за исключением участка шириной 1 мм на правой передней лапке, а затем последнюю ампутируют, производя разрез через этот необлученный участок. В этом случае совершенно очевидно, что бластемные клетки поступают с поверхности разреза, поскольку все тело, включая правую переднюю лапку, было лишено способности к регенерации.

Описанные процессы анализировали с применением современных методов. Электронный микроскоп позволяет наблюдать изменения в поврежденных и регенерирующих тканях во всех деталях. Созданы красители, выявляющие определенные химические вещества, содержащиеся в клетках и тканях. Гистохимические методы (с применением красителей) дают возможность судить о биохимических процессах, происходящих при регенерации органов и тканей.

Полярность.

Одна из самых загадочных проблем в биологии – происхождение полярности у организмов. Из шаровидного яйца лягушки развивается головастик, у которого с самого начала на одном конце тела находится голова с головным мозгом, глазами и ртом, а на другом – хвост. Подобным же образом, если разрезать тело планарии на отдельные фрагменты, на одном конце каждого фрагмента развивается голова, а на другой – хвост. При этом голова всегда образуется на переднем конце фрагмента. Эксперименты ясно показывают, что у планарии существует градиент метаболической (биохимической) активности, проходящий по передне-задней оси ее тела; при этом наивысшей активностью обладает самый передний конец тела, а в направлении к заднему концу активность постепенно снижается. У любого животного голова всегда образуется на том конце фрагмента, где метаболическая активность выше. Если направление градиента метаболической активности в изолированном фрагменте планарии изменить на противоположное, то и формирование головы произойдет на противоположном конце фрагмента. Градиент метаболической активности в теле планарий отражает существование какого-то более важного физико-химического градиента, природа которого пока неизвестна.

В регенерирующей конечности тритона полярность новообразуемой структуры, по-видимому, определяется сохранившейся культей. По причинам, которые еще остаются неясными, в регенерирующем органе формируются только структуры, расположенные дистальнее раневой поверхности, а те, что расположены проксимальнее (ближе к телу), не регенерируют никогда. Так, если ампутировать кисть тритона, а оставшуюся часть передней конечности вставить обрезанным концом в стенку тела и дать этому дистальному (отдаленному от тела) концу прижиться на новом, необычном для него месте, то последующая перерезка этой верхней конечности вблизи плеча (освобождающая ее от связи с плечом) приводит к регенерации конечности с полным набором дистальных структур. У такой конечности имеются на момент перерезки следующие части (начиная с запястья, слившегося со стенкой тела): запястье, предплечье, локоть и дистальная половина плеча; затем, в результате регенерации, появляются: еще одна дистальная половина плеча, локоть, предплечье, запястье и кисть. Таким образом, инвертированная (перевернутая) конечность регенерировала все части, расположенные дистальнее раневой поверхности. Это поразительное явление указывает на то, что ткани культи (в данном случае культи конечности) контролируют регенерацию органа. Задача дальнейших исследований – выяснить, какие именно факторы контролируют этот процесс, что стимулирует регенерацию и что заставляет клетки, обеспечивающие регенерацию, скапливаться на раневой поверхности. Некоторые ученые полагают, что поврежденные ткани выделяют какой-то химический «раневой фактор». Однако выделить химическое вещество, специфичное для ран, пока не удалось.

РЕГЕНЕРАЦИЯ У РАСТЕНИЙ

Широкое распространение регенерации в царстве растений обусловлено сохранением у них меристем (тканей, состоящих из делящихся клеток) и недифференцированных тканей. В большинстве случаев регенерация у растений – это, в сущности, одна из форм вегетативного размножения. Так, на кончике нормального стебля имеется верхушечная почка, обеспечивающая непрерывное образование новых листьев и рост стебля в длину в течение всей жизни данного растения. Если отрезать эту почку и поддерживать ее во влажном состоянии, то из имеющихся в ней паренхимных клеток или из каллуса, образующегося на поверхности среза, часто развиваются новые корни; почка при этом продолжает расти и дает начало новому растению. То же самое происходит в природе, когда отламывается ветка. Плети и столоны разделяются в результате отмирания старых участков (междоузлий). Таким же образом разделяются корневища ириса, волчьей стопы или папоротников, образуя новые растения. Обычно клубни, например клубни картофеля, продолжают жить после отмирания подземного стебля, на котором они выросли; с наступлением нового вегетационного периода они могут дать начало собственным корням и побегам. У луковичных растений, например у гиацинтов или тюльпанов, побеги формируются у основания чешуй луковицы и могут в свою очередь образовывать новые луковицы, которые в конечном счете дают корни и цветоносные стебли, т.е. становятся самостоятельными растениями. У некоторых лилейных воздушные луковички образуются в пазухах листьев, а у ряда папоротников на листьях вырастают выводковые почки; в какой-то момент они опадают на землю и возобновляют рост.

Корни менее способны к образованию новых частей, чем стебли. Клубню георгина для этого необходима почка, образующаяся у основания стебля; однако батат может дать начало новому растению из почки, образуемой корневой шишкой.

Листья тоже способны к регенерации. У некоторых видов папоротников, например у кривокучника (Camptosorus ), листья сильно вытянуты и имеют вид длинных волосовидных образований, заканчивающихся меристемой. Из этой меристемы развивается зародыш с зачаточными стеблем, корнями и листьями; если кончик листа родительского растения наклонится вниз и соприкоснется с землей или мхом, зачаток начинает расти. Новое растение отделяется от родительского после истощения этого волосовидного образования. Листья суккулентного комнатного растения каланхое несут по краям хорошо развитые растеньица, которые легко отпадают. Новые побеги и корни формируются на поверхности листьев бегонии. Специальные тельца, называемые зародышевыми почками, развиваются на листьях некоторых плауновых (Lycopodium) и печеночников (Marchantia); упав на землю, они укореняются и образуют новые зрелые растения.

РЕГЕНЕРАЦИЯ , процесс образования нового, органа или ткани на месте удаленного тем или иным образом участка организма. Очень часто Р. определяется как процесс восстановления утраченного, т.. е. образование органа, подобного удаленному. Такое определение однако исходит из ложной телеологической точки зрения. Прежде всего возникающая при Р. часть организма никогда не бывает вполне тождественна с ранее существовавшей, она всегда в РЕГВНЕРДЦ»» том или ином ртношении отличается от нее (Schaxel). Затем достаточно известен факт образования вместо удаленного участка совсем иного, несходного с ним. Соответствующее явление также относят к Р., правда, называя его атипической Р. Однако нет никаких данных, говорящих за то, что имеющиеся здесь прог-цессы по существу отличаются чем-нибудь от иных видов Р. Таким образом правильнее будет определить Р. вышеуказанным образом. Классификация я в л е н и й Р. Различают два основных типа регенерационных процессов: физиологическую и репаративную Р. Физиологическая Р. имеет место в том. случае, когда процесс наступает без наличия какого-либо специального воздействия извне. Такого рода Р. представляют собой явления периодической линьки птиц, млекопитающих и других животных, смена слущивающегося эпителия кожи человека, а также замещение новыми клетками погибающих клеток желез и других образований. К репаративной Р. относятся случаи новообразования в результате получения организмом того или иного повреждения как вследствие искусственного вмешательства, так и вне зависимости от этого. Ниже преимущественно будут излагаться явления репаративной Р., как наиболее изученной. В зависимости от конечного результата процесса репаративная Р. делится на типичную, когда образовавшийся орган б. или м. сходен с ранее существовавшим, и атипичную, когда такого сходства не имеется. Отклонения от типичного хода Р. могут заключаться или в образовании вместо ранее существовавшего органа совсем иного или в видоизменении его. В том случае, когда появление иного органа связано с извращением полярности, напр. когда вместо отрезанного хвостового конца червя регенерирует головной, явление носит название гетероморфоза. Видоизменение органа может выражаться в наличии каких-либо добавочных частей вплоть до удвоения или утроения органа или в отсутствии обычно свойственных образований. "Следует помнить, что подразделение Р. на типичную и атипичную, основанное на теле-ологическом воззрении и ориентирующееся на ранее существовавший орган, не отражает существа явлений и является совершенно условным. Способность, к Р.-чрезвычайно широко распространенное явление как среди животных, так и среди растений, хотя отдельные виды и отличаются друг от друга как по степени ре-генерационной способности, так и по течению самого процесса. В общем можно считать, что чем выше организация организма, тем меньше его регенерационная способность; однако имеется ряд исключений из этого правила. Так, многие # родственные виды отличаются очень сильно"друг от друга по регенерацион-ным проявлениям. С другой стороны, ряд вышестоящих видов более способен к регенерации, чем нижестоящие. У амфибии могут напр. регенерировать даже отдедьные органы, как хвост и конечность, в то время как некоторые черви (Nematoda) отличаются почти полным отсутствием Р. Как правило однако наибольшая способность к Р. встречается среди низших животных. Одноклеточные характеризуются сильно выраженной регенерационной способностью (рис.1). У нек-рых видов кусочки, равные одной сотой части животного, способны восстановить его целиком. Среди многоклеточных наибольшей регенерационной способностью отличаются ки- шечнополостные и черви. Некоторые гидроиды восстанавливают животное из одной двухсотой его части. Черви (особенно Annelida и Turbel-laria) из нескольких сегментов могут образовать все недостающие части. Мало уступает этим видам такая высоко стоящая группа, как оболочники, где « может иметь место Р. всего животного из одного участка его (напр. жаберной корзины у Clavellina). Хорошо выражена регенерационная способность и у нек-рых иглокожих; так, морские звезды образуют целое живот- Рис - ! Регенерация инфузории ттпа ич пттттпгп ttv Stentor, разрезанной на три ча- ное из одного лу- сти (По корше^у.) ча(рис. 2). Значительно сужена регенерационная способность у моллюсков и членистоногих. Здесь могут регенерировать лишь отдельные придатки тела: конечности, щупальца и т. д. Из позвоночных животных регенерационные явления выражены лучше всего у рыб й амфибий. Еще у рептилий возможна регенерация хвоста и хвостообраз-ных придатков на месте конечностей, у птиц из" наружных частей регенерирует лишь клюв

Рисунок 2. Регенерация морской звезды Linckia mul-

Tifofa из одного луча. Последовательные стадии регенерации. (По Коршельту.) и кожные покровы. Наконец млекопитающие и в том числе человек способны к замещению лишь небольших участков органов и кожных повреждений. Регенерационная способность не остается одинаково выраженной в течение всей жизни индивидуума: различные стадии.развития отличаются в этом отношении каждая своими характерными особенностями. Как правило можно сказать, что, чем моложе животное, тем выше его регенерационная способность. Головастик например может на ранних стадиях развития регенерировать конечности, в то время как, вступая в период метаморфоза, он эту способность теряет. Указанное общее правило имеет однако ряд исключений. Известны случаи, когда более ранний стадий развития обладает меньшей регенерационной способностью. Личинки планарий отличаются меньшим разви- 685 РЕГЕНЕРАЦИЯ 536 тием ре генерационных явлений по сравнению со взрослыми животными (Steinmann), то же имеет место для личинок нек-рых других животных. Уже из вышесказанного можно было видеть, что различные области организма отличаются друг от друга по своей регенерационной способности. Вейсман принимал, что способ- ность Р. зависит Р н "и{ [ [ | | | ([ | от того, насколько данная -часть подвержена опае-. ности повреждения, причем чем больше последняя, тем больше и регенерацион-ная способность,- свойство, выработанное в результате естественного отбора. Однако поел едние исследования показали, что такая закономерность не 6,6 15 6,9 10 7,2 5 ■ ■\ г°\ /i [^ 1 * .у/ "" ч > *■-.„ 8 Ю 12 14 Рисунок 3. Сплошная линия-изменение интенсивности митогене-тического излучения регенерирующего хвоста аксолотля. Н? ордин.те условные единицы интенсивности излучения. Прерывистая линия - изменения активной реакциитканей регенерирующей конечности аксолотля. На ординате-значения рН (дан- может быть уста-ные Окунева). На. абсциссе-дни НГШ7ТРТТЯ. ^„^ пл-регенерации. (Из Бляхера и ноялена. ряд ор Бромлей.) ганов, не подвер- гающихся обычно повреждению в течение свободной жизни индивидуума и хорошо защищенных, обладает тем не менее высокой регенерационной способностью (Morgan, Przibfam). Убиш (Ubisch) связывает регенерационные явления с диференци-ровкой организма; по его мнению ранее развивающиеся части скорее прекращают регенерировать с возрастом или их Р. отличается меньшей интенсивностью. Так, у амфибий, где диференцируются раньше органы, лежащие более кпереди, можно установить соответствующий градиент Р.-спереди назад. Утверждения Убиша, в пользу к-рых говорит ряд данных, нуждаются все же в дальнейшем подтверждении на большем материале. На некоторых видах (преимущественно на червях) Чайлд (Child) и его сотрудники установили точно так же определенный градиент Р. по отношению к продольной оси тела, но направление его не всегда идет спереди назад, а связано с более сложными закономерностями. Чайлд считает, что этот градиент зависит от степени физиол. активности различных участков организма. Более низко организованные животные обладают способностью регенерировать как части, расположенные проксимально от места ампутации, так и

Рис 4. Регенерация ампутированной передней конечности у саламандры через */ 4 (а) и 12 (Ь) часов, a: i-бластемные клетки; 2 -культя плеча; 3 -нерв; 4 -эпидермис; Ь: 1- бластемные клетки; 2 -хрящ; 3-эпидермис; 4 -культя плеча.

Расположенные дистально. У высших животных регенерируют лишь последние.У амфибии напр. орган, даже пересаженный в перевернутом положении, регенерирует то же образование, что и в обычном положении.

Рисунок 5.:Регенерап*яг «ам-

Течение регенерационного процесса. Регенерационный процесс протекает различно в зависимости от того, с каким организмом"мы имеем дело и какая часть его подвергается удалению. В качестве примера можно рассмотреть наиболее изученный объект- Р. конечности амфибий. При этом имеют место следующие явления. После ампутации органа происходит сближение краев раны вследствие сокращения перерезанной мускулатуры. Находящаяся наповерхно-сти раны кровь свертывается, выделяя нити фибрина. Свернувшаяся путированной"""передней Кровь при участии ПО- конечности у саламандры ттржттрнтттлтг ткянрй пб- чрррз 8 дней: J и 2 - бла " врежденных тканей оо- стемные клетки; з- эпи- разует на раневой ПО- дермис; 4 -культя плеча. верхностй струп. В результате повреждения тканей и воздействия внешней среды на незащищенную кожей поверхность в органе возникают процессы распада. Последние выявляются в изменении кислотности регенерата (понижение рН от 7,2 до 6,8, Окунев) и появлении митогенетического излучения (Бляхер и Бромлей). Раневая поверхность не остается однако долго незащищенной: уже в течение ближайших часов наблюдается процесс наползания эпителия с краев раны, в результате чего на раневой поверхности образуется эпителиальная пленка. Под этим эпителиальным покровом происходятвседальнейшие процессы, сводящиеся к разруше- нию и перестройке старого и образованию нового органа. Эти про-?VІ^*i цессы выражают- л ° " ся, с одной стороны, в продолжающемся распаде. Последний выяв- Рисунок G. Регенерация передней лен морфологиче-конечности у саламандры через СКИ В резуЛЬТа-9 дней: 1 -гигантские клетки; тр гигт иррирттп-2-бластемные клетки; л-нудь- Те ГИСТ " исоле Л и тя плеча; 4 -мускулатура; 5- Вания, ПОКаЗЫВа-эпидермис. ющего " картины разрушения тканей и прихода в регенерат многочисленных кровяных клеток. Распад особенно силен в период от 5 до 10 дней, начиная с момента ампутации, когда он достигает повидимому наибольшей интенсивности. Об этом же свидетельствуют и физиологические показатели. Окунев* нашел наибольшую кислотность на 5-й день, когда рН=6,6. Усиливается одновременно и интенсивность митогенетического излучения по сравнению с предыдущими днями (Бромлей). Кривые повышения кислотности и интенсивности митогенетического излучения оказываются параллельными друг другу на всем протяжении регенерации. И та и другая ■ имеют две вершины максимума-на 1-й и 5-й день Р. (рис. 3). Наряду с этим уже на первой неделе Р. ясно обозначаются новообразовательные процессы. Они сказываются преимущественно в образовании под эпителиальной пленкой разрастания из однородных клеток, носящего название бластемы. Развитие нового органа идет преимуще-

Рисунок 7. Регенерация ам-

■ственно за счет клеток бластемы (рис. 4-7). После известного периода роста в регенерате происходит диференциация отдельных частей. При.этом сначала диференцируются более проксимальные части, а затем уже дистальные. В этом отношении не у всех организмов процесс течет одинаково. У некоторых _^Щ|^животных отношения ^ШШЁ!%чдаже могут быть обрат- ными, Физиол. особенности регенерата конеч-- 2 но не те, что у сформированного органа. Это проявляется в частности 11 в том, что регенерат об-j ладает гистолизирую-^ щими свойствами. В том случае, когда поверхность его приходит в соприкосновение с другими тканями, напр. при закрытиирегенерата ко- путированной "передней ЖНЫМ ЛОСКутОМ, насту-конечносты у саламандры пает ГИСТОЛИЗ ПОСЛвД- сте Р м^\Те е тки/ 2 "-ги: них (Бромлей и Орехо-гантские клетки; з- эпи- вич). Не следует думать, дермис; 4- мускулатура; что процесс Р. СКаэыва-5-плечевое кольцо; 6"- р _ тгпькп на амггети-культя плеча. (По Кор- ется только Hcl амиуш шельту.)рованном, регенерирую- щем органе. Он оказывает свое воздействие и на остальной организм, что может проявляться в различных отношениях. Так, изменение может быть уловлено в крови животного, митогенетическое излучение которой отклоняется от нормальной интенсивности, причем" колебания эти имеют характерную кривую. При Р. у гидр отмечен распад органов, не находящихся в непосредственной близости с регенератом,именно половых клеток, притом преимущественно мужских (Goetsch). Влияние Р. сказывается также на росте и иных свойствах организма - явление, б. ч. описываемое под названием регуляции. Материал регенерата. Вопрос о материале, за счет к-рого происходит образование регенерата, должен разрешаться различно в зависимости от вида животного и характера нанесенного повреждения. Если дело идет о повреждении одной какой-либо ткани, то обычно процесс идет за счет разрастания остатка соответствующей ткани. Сложнее обстоит дело в случае Р. органа или восстановления организма из отдельного участка его. При этом однако можно установить, что в основном, по крайней мере у амфибий, Р. идет за счет материала, непосредственно прилежащего к раневой поверхности, а не за счет клеток, приходящих из других областей организма. Это показывают олыты Р. гаплоидноядерноЙ конечности тритона, пересаженной на диплоидноядер-ное животное. Возникающий при этом регенерат состоит из гаплоид ноя дер ных клеток (Hert-wig). To же следует из пересадок конечностей от черной расы аксолотлей к белой, когда регенерирующая конечность оказывается черной. Факты этл исключают представление о Р. за счет различных клеточных элементов, приходящих с током крови. При рассмотрении материала, идущего на Р., приходится считаться с двоякой возможностью. Р. может происходить или за счет так наз. резервных, индиферент-ных-клеток, остающихся недиференцированны-ми во время эмбрионального развития, или же имеет место использование уже специализиро-

вавшихся клеточных элементов. Важное значение резервных клеток было показано для ряда животных. Так, Р. у гидр происходит в основном за счет т. н. интерстициальных клеток. То же имеет место у турбеллярий. У кольчецов эта роль принадлежит необластам, относящимся к подобного же рода элементам. У ас-цидий индиферентные клетки также играют важную роль в Р. Сложнее обстоит дело у позвоночных, где различные авторы приписывают основную роль в Р. разным тканям. Хотя и здесь имеются указания на происхождение клеток бластемы из неспециализированных элементов, однако факт этот нельзя считать прочно установленным. Тем не менее положения господствовавшей ранее теории Gewebe-sprossung, признававшей возможность развития клеток какой-либо ткани лишь из клеток подобной же ткани, были основательно поколеблены. Но если можно принять образование значительной массы регенерата за счет неспециализированных клеток, то это не исключает и возможности развития части регенерата из дифе-ренцированных элементов. При этом может итти речь как о развитии тканей -за счет размножения одноименных элементов, так и о переходе клеток одного типа в другой (метаплазия). На самом деле во многих случаях можно показать, что имеют место оба-эти процесса. Так, мускулатура обычно В значительной Рисунок 8. Рентгенограм-чаСТИ ПРОИСХОДИТ ИЗ ОСТав- ма регенерации бес- шихся неразрушенными $ЖсЖ™?^ мышечных клеток. У кольчецов можно установить образование мышц из эпителиальных элементов. То же имеет место у нек-рых раков (Пржибрам). Образование нервной системы из эктодермальных клеток установлено у асцидий (Schultze). У амфибий известно, что Р. линзы может происходить/из края радужины (Wolff, Colucci). Также можно принять образование хрящевого и костного скелета без участия хрящевых -и костных элементов ранее существовавшего органа.

Поскольку регенерационный процесс включает в себя как. развитие из индиферентных элементов, так и участие специализированных элементов, то в каждом отдельном случае необходимо специальное исследование для выяснения роли каждого из,этих процессов в Р. Если рассмотреть как пример Р. у амфибий, опять-таки в силу ее наибольшей изученности, то дело здесь представляется в следующем виде. Нервы всегда образуются за счет роста окончаний старых нервных стволов. Иначе обстоит дело с костной тканью в случае Р. конечности. Было показано, что даже при удалении всего костного скелета конечности, включая и плечевой пояс, при ампутации такой бескостной конечности наступает Р. органа, обладающего скелетом (Fritsch, 1911; Weiss, Bischler) (рис. 8). Иначе обстоит дело при Р. хвоста. В этом случае костные части образуются лишь тогда, когда имеется в области регенерата повреждение старых скелетных частей, лены плечевой пояс и плечо; ампутация выше локтя. Регенерированы предплечье с костями предплечья и кисть с фалангами. Carpus еще хрящевой, radius и ulna сдвинуты в бескостное плечо. (По Кор-шельту.)

н костные элементы последнего могут принимать участие в Р. (рис, 9). Относительно соединительнотканной части кожи, corium, мы также имеем доказательство возможности ее образования без участия старого corium а (Вейс), Что касается мускулатуры, то удаление большей части мускулатуры конечности не приводило к каким-либо аномалиям в развитии регенерата. Кроме того в случае пересадки кусочка хорды у личинки Anura в область хвоста, лишенную мускулатуры, удавалось вызвать образование хвоста в этом месте при соотв. направлении разреза хвоста. Образующийся при этом орган обладал мускулатурой (Marcucci). Однако гистологические исследования показывают, что при обычной Р. хвоста мышцы его образуются из соответствующих же элементов старого органа (NaVІlle). Так. обр. значительная часть регенерата у амфибий *может образоваться не в результате размножения старых тканей, а из массы бластемы, происхождение элементов которой, как уже указывалось, не установлено еще в достаточной мере. В то же время могут иметь место и иные отношения, что мы имеем при Р. хвоста, осевые органы й-рого регенерируют лишь при наличии старых. При этом следует отметить, что даже Р. одного и того же органа Может итти за счет различного материала в зависимости от условий, как можно было убедиться на примере образования мышечных элементов хвоста. Приведенные опыты, хотя и указывают на возможность развития нек-рых тканей (напр. костной) не из клеток подобной же ткани, не разрешают все же вопроса о том, как обстоит дело при нормальных условиях Р. В этом направлении необходимы дальнейшие исследования.

Условия Р. А. Регенерирующая область. Течение Р. конечно находится в тесной зависимости от того, какой участок организма подвергается ампутации и следовательно в какой области разыгрываются регенераци-онные явления. Прежде всего мыможем столкнуться с отсутствием Р. в нек-рых частях организма или вернее со слабым выражением соответствующих явлений. Филиппо (Philippeau) обнаружил отсутствие регенерации у саламандры в случае экстирпации конечности со всем плечевым поясом. Шотте (Schotte) показал, что ампутация хвоста сопровождается регенерацией лишь в том Рисунок 9. Рентгенограмма регенерировавшего хвоста ящерицы Lacerta mu-ralis. Разрыв вобласти IV хвостовэго позвонка.(По Коршельту.)

Рисунок 10. Triton cristatns после полного удаления территории хвоста; никаких следов регенерации в течение 8 месяцев.

Случае, если разрез проходит достаточно ди-стально (рис. 10). Валлет и Гиено (Vallette, Guyenot) отмечают отсутствие регенерации носовых частей головы при ампутации слишком большого участка. Точно так же Р.,глаза не происходит при полной энуклеации (Шак-сель). Жабры при полном удалении не регенерируют. Гиено толкует эти явления таким образом, что Р. может происходить лишь

Рисунок 12. Регенерация переднего отдела у дождевого червя. Положение регенерата определяется нервным стволом: 1- плоскость регенерации; 2-конец перерезанного нервного ствола.

Рисунок 11. Замена левого глаза, удаленного вместе с глазным ганглием, антеннообразным придатком (I): 2-надглоточный ганглий; 3 - глаз; 4- глазной ганглий. (По Коршельту.) при наличии определенных клеточных комплексов, к-рые могут быть полностью удалены при достаточной степени повреждения. Достоверное доказательство этого положения однако пока еще не дано, и не исключено, что в некоторых случаях отсутствие регенерации, обнаруженное указанными авторами, связано и с иными условиями. От регенерирующего участка зависит также характер того образования, которое возникает при Р. Хорошо известно, что при удалении различных частей организма возникают различные же образования. Не следует однако объяснять это явление тем, что новообразующийся орган должен быть сходен с удаленным. Так, известен опыт Гербста (Herbst), подтвержденный и другими авторами, когда при удалении у рака глаза при оставлении зрительного ганглия регенерирует глаз, а при одновременном удалении и ганглия наблюдается Р. антенны (рис. 11). При экстирпации у одного вида насекомых (Dixippus morosus) усика в дистальной части наблюдается образование усика, при ампутации же у основания регенерирует конечность. Соответствующие явления носят название гомойозиса. Понятно, что от регенерирующего участка зависит также и скорость Р., о чем уже говорилось. Б. Части ампутированного органа. Как видно было из опытов удаления скелета конечности, Р. может иметь место и в его отсутствии. Однако, как показала Бишлер,. при Р. бескостного органа регенерирует не тог сегмент, к-рый подвергается ампутации, а лишь более дистальный, так что при Р. напр. конечности возникает орган, укороченный на один сегмент. Поскольку развитие наблюдается и в отсутствии костной ткани, то связь специфичности Р. со скелетом отрицается. Кроме того> пересадки одних костей на место других, напр. бедра на место плеча,не изменяют морфологии регенерата. Важная роль в регенерационных явлениях принадлежит нервной системе. Необходимость наличия нервных связей для образования регенерата доказана, однако не для всех видов. Для ряда животных такой законо- 54£

мерности повидимому не существует. Наиболее ясные данные имеются по червям, иглокожим и особенно амфибиям.. У червей Морган показал необходимость наличия нервных окончаний в подвергающемся Р. участке для того, чтобы регенерационный процесс мог иметь место (рис. 12). То же показано и для морских звезд (Мог-gulis). Однако имеются данные, противоречащие толь-ко-что упомянутым, так что в этом йаправлении необходимы дальнейшие исследования. Для амфибий показано, что наличие центральной нервной системы не является необходимым условием P. (Barfurth, Рубин, Годлевский). Однако в случае нарушения периферической иннервации Рисунок 13. Гетеротопи-регенерирующего органа ™ч Я енная°путем С от1 процесс восстановления ОТ- ведения плечевого СуТСТВует. Имеющие здесь сплетения. (По Гие- место отношения были вы- н0 -)

Яснены в результате подробных опытов Шотте и Вейса. Оба они показали, что в случае полной денервации Р. не имеет места. Шотте показал, что при этом имеет значение лишь симпат. нервная система, т. к. при перерезке симпат. нервов и оставлении чувствительной и моторной иннервации образование органа не происходит. Наоборот, Р. налицо при сохранении одной симпат. иннервации. Значение нервной системы доказано Шотте не только для взрослых животных, но и для личинок. Данные Шотте в отно-: шении симпат. иннервации однако вызывают возражение у некоторых авторов, считающих, что основная роль в регенерационном процессе принадлежит спинальным ганглиям (Locatelli). Полученные данные говорят также о том, что роль нервной системы не ограничивается только начальными стадиями процесса; для продолжения Р. наличие нервной системы также является; необходимым. Ряд авторов ставит специфичность регенерата в связь с нервной системой. По их мнению имеется специфическое влияние последней. Интересные данные в пользу этого предположения были приведены Локателли, которая получала образование добавочных конечностей у тритонов путем выведения центрального конца перерезанного п. ischiadici на поверхность тела в области бока и задней конечности (рисунок 13). Однако Гиено и Шотте показали своими исследования- ; Жк, что специфичность нервов не играет роли в данном явлении. Правда, приведение перерезанного конца нерва в ту или иную область Организма вызывает здесь образование органа, однако характер органа связан со специфичностью области, а не нерва. Один и тот же нерв, будучи приведен в участок, окружающий заднюю конечность, вызывает здесь развитие зад-! ней ноги, а попадая в участок, расположенный ближе к хвосту, вызывает образование, именно последнего органа. При приведении нерва в промежуточные области можно полу-

Рисунок 14. Заторможенная регенерация правой задней конечности аксолотля вследствие образования рубца кожи. (По Кор-шельту.)

Чить химерические образования между хвостом и конечностью. Ряд других данных в пользу специфичности нервной системы (Вольф, Walter) также получил иное объяснение. В связи с этим предположение о специфичности нервного влияния на Р. должно быть отвергнуто. Удаление кожи в месте ампутации на известном протяжении приводит к тому, что Р.. органа задерживается до тех пор, пока эпителий, наползая с края кожи на открытую поверхность, не покроет ее и не дойдет до места ампутации. Может наступить также дегенерация открытого участка и тогда Р. начинается с того момента, когда дегенерация участка дойдет до края кожи и соответствующие части отвалятся. Т. о. наличие кожи, вернее эпителиального покрова, является необходимым условием Р. органа. Положение это объясняет отсутствие Р. при закрытии раневой поверхности кожным лоскутом (рис. 14), показанное рядом авторов как на амфибиях (Tornier, Шаксель, Годлевский, Ефимов), так и на насекомых (Шаксель и Adensamer). Явление это обусловливается тем, что эпителий кожи не имеет доступа к раневой поверхности, будучи отделен от нее соединительнотканной частью кожи, для наличия же Р. необходимо покрытие рацы молодым эпителием. Если под лоскут кожи,. покрывающий раневую поверхность, пересадить кусочек кожи, то Р. в этих случаях наступает (Ефимов). Факт этот говорит за то, что механическое препятствие для роста регенерата в этом явлении не играет роли. Специфичность кожи не влияет на характер регенерата. За это говорит опыт Таубе, пересаживавшего манжетку красной кожи живота, у тритонов на конечность и получившего после Р. из места, покрытого красной кожей, обычную черную конечность. То же подтверждает и пересадка внутренних частей хвоста в кожный рукав конечности, когда наблюдается у. хвоста (Бишлер). Удаление большей части Мускулатуры оказывает влияние лишь на скорость процесса. Приходится отрицать также и специфическое влияние мускулатуры, поскольку замена путем пересадки мускулатуры одной области на иную не изменяет характера регенерата (Бишлер). Приходится т. о. признать, что каждая из упомянутых частей. органа (нервы, скелет, мускулатура, кожа), взятая в отдельности, не является специфическим условием Р. В. Части регенерата. Регенерирующий орган неоднороден не только в том смысле г что состоит из разных тканей, в нем имеются участки, чрезвычайно сильно отличающиеся друг от друга по своим свойствам. Если разделить регенерирующий орган на две различные части, как это обычно делается, бластему и остальной регенерат, то поведение их оказывается резко отличным. При удалении бластемы последняя вновь образуется остающимися частями, то же происходит при пересадке части органа, не заключающего бластему, в какую-нибудь иную область организма. При этом даже очень небольшие кусочки трансплянтированно-го участка могут развить соответствующий орган (рис. 15). Иначе обстоит дело при пересадке другой части регенерата-бластемы. При этом обнаружилось, что до известного возраста, примерно двух недель, бластемы, будучи пересажены, не развиваются дальше и рассасываются (Шаксель). Бластемы в опытах де Джорджи (de Giorgi), пересаженные на спину в воз- ■513

Рисунок 15. Результаты ■трансплантации тер-

Неи конечности на место хвоста. (По Гие-но и Понс.) расте до 30 дней, хотя и приживлялись и несколько увеличивались, но диференцировки не испытывали. Какого рода условия имеют тут.значение, сказать трудно, во всяком случае вывод из указанных фактов может быть лишь тот, что для наличия Р. необходима связь между бластемой и остальными частями регенерата. Ряд авторов пытался выяснить, какая.именно часть регенерирующего органа является специфичной,отличающей один орган от другого. Особенно много внимания было уделено вопросу о том, является ли специфичным материал бластемы. Соответствующие исследования сводились к пересадкам бластем одних органов на другие с целью выяснения, изменится ли при этом специфичность образующегося из бластемы органа. Пересадки бластем производились на различных видах животных. При этом обнаружилось, что регенерат, пересаженный до известного возраста, развивается в соответ-ритории хвоста на ме- rrpRW w г той пбняотьто rm-сто плеча и фрагмен- ствии с тои ООЛастью орта территории перед- ганизма, на которую он пересаживается. Т. о. эти опыты говорят за неспецифичность бластем. Однако все до сих пор проведенные исследования не являются достаточно убедительными. Милоевич (MiloseVІc) при пересадке молодых регенератов задней конечности на место передней получил в ряде случаев образование на новом месте передней конечности, т. е. развитие сообразно месту пересадки. Однако данные эти не доказательны вследствие отсутствия достоверного критерия того, что образующийся орган происходит действительно из ткани тран-сплянтата, а не самой регенерирующей передней конечности. В опыте Гиено и Шотте, где бластема конечности, будучи пересажена на хвост, дала образование хвоста, сами авторы сомневаются в происхождении материала органа: Наконец Вейс пересаживал регенераты хвоста в область передней конечности и получил в трех случаях развитие конечности. Однако и в этих опытах не может быть уверенности относительно того, за счет ли тканей трансплянтата идет Р. Таким образом вопрос о возможности изменения пути развития регенерата у амфибий, а вместе с тем и вопрос о специфичности бластемы, остается открытым. Аналогичное положение имеет место и для низших животных. Опыты Гебгардта, получившего в двух случаях образование головы из регенерацион-ной почки хвоста у планарии, могут быть истолкованы как результат участия в регенерации тканей головной области, куда производилась пересадка. Все сказанное касается только молодых регенератов, поскольку все авторы сходятся в том, что новообразующиеся ткани, взятые в относительно позднем возрасте, отличаются уже специфичностью. Несмотря на недостаточную очевидность опытов пересадки молодых регенератов большинство авторов считает специфичной не бластему, а лишь остальную часть органа. Наличие мито-тенетического излучения, в регенерате позво- лило высказать мысль о возможности влияния ■ излучения одних частей регенерата на другие, особенно митогенетических лучей, возникающих при резорпции тканей, на размножение клеток бластемы (Бляхер и Бромлей). Пока еще однако значение митогенетического излучения при Р. не может считаться установленным. Несомненно все же, что, воздействуя ми-то генетическими лучами на регенерат, мбжно вызвать ускорение процесса (Бляхер, Воронцова, Ирихимович, Лиознер). Те же авторы показали наличие стимуляции регенерационных процессов в тех случаях, когда раневые поверхности имеют возможность влиять друг на друга (например при треугольном вырезе участка хвоста). Г. Процессы, происходящие в организме во времярегенер а ц и и. Р. является процессом, зависящим не только от состояния данного органа, но и от всего организма. Поэтому процессы, происходящие в последнем, могут иметь решающее влияние на регенерационный процесс. В опытах Геча ампутация головы у гидры не вела к Р. в том случае, когда гидра обладала почкой. Тогда происходили лишь регулятивные процессы, в результате которых голова увеличивающейся почки занимает место головы полипа. Если у двухголовой планарии ампутировать одну голову, то последняя не регенерирует (Штейн-ман). Изменение локализации регенерирующего органа по отношению к организму может не оказать, однако влияния на характер регенерации. Курц (Kurz) пересаживал ампутированную конечность на спину, причем здесь регенерировала нормальная конечность. Вейс менял местами передние и задние конечности тритона и опять-таки Р. пересаженных конечностей приводила к развитию того органа, который образовался бы в случае оставления их на месте. То же имеет место при пересадке участка хвоста или передней части головы. Т. о. то или иное место развития процесса не является специфичным при Р. Влияние организма на Р. его частей может сказаться не только на обусловливании самой возможности Р., но и на характере регенерата, его форме, положении и течении процесса. Примером такого воздействия может служить например значение функции для регенерационного процесса, когда употребление органа сильно сказывается на регенерате. Значение других частей организма для Р. данной области выявляется в опытах с инкреторными железами; удаление желез внутренней секреции или воздействие их инкретами может оказать влияние на ход Р. Несомненно, что целый ряд процессов, происходящих в организме, оказывает воздействие на регенерационный процесс. Из них можно упомянуть случаи одновременно наличия в организме нескольких регенерационных процессов. Произойдет ли при этом стимуляция или торможение Р.-зависит от конкретных условий, выражающихся в размере этих повреждений, расположении их и т. д. (Zeleny). Влияние имеющихся в организме связей на Р. сказывается в опытах вырезания из тела гидр или планарии небольших участков. При этом может наступить извращение полярности, когда на обеих сторонах регенерата образуются одинаковые органы (образование животных с двумя головами или двумя хвостами в зависимости от той области, из которой вырезался регенерирующий участок).

Д. Окружающая среда. Что Р. может протекать лишь в соответствующей среде, достаточно очевидно. При составе среды, вредно действующем на ткани, регенерационный процесс конечно невозможен. Для нормального течения Р. окружающая среда должна отвечать ряду условий. К ним относится прежде всего определенное содержание кислорода (Леб). Далее Р. возможна лишь в определенных температурных границах. Оптимум для амфибий напр. равен 28°, выше и ниже этой температуры Р. замедляется, при 10° она совсем прекращается. По исследованию Мура (Мооге) скорость Р. в зависимости от t° подчиняется закону вант Гоффа. Для водных животных большое значение имеет состав окружающей их жидкости. Р. возможна лишь при определенной концентрации морской воды (Леб, Штейнман). Наилучшая Р. наблюдается в разведенной морской воде. Нек-рые соли (калий, магний) оказываются также необходимыми для наличия регенерационного про-

Рис 16. Хвостовые Ч есса (Леб)> ДРУ ги е ока-отрезки Pianaria go- зывают влияние на ско-nocephala с регенера- рость его. Попов получил при воздействии 1 ; рад значительную стимуляцию ь- без воздействия; регенерационного процес- A ~ B ??5/ eE M B pi e 5 т^Г са " В03 Д еиств У я на плана- в^действие 10 минут"Р ий и ПОЛИПОВ раСТВОра- танином+KJ-через4ми MgCl 2 , KJ с глицери- дня; С-то же через 7ном, танином и др. веще- дней.(ПоКоршельту.) ствами (рисунок 16) . Сти. мулирующее действие на регенерацию оказывают также вещества, понижающие поверхностное натяжение среды, Е. Характер повреждения. Регенерационный процесс зависит не только от той области, где производится ампутация, но и от характера повреждения. При небольшом порезе на стенке тела животного может наступить быстрое заживление при почти полном отсутствии новообразования тканей. При нанесении однако в этом же месте нескольких насечек, мешающих такому заживлению,на- ^ .„ „ г vrmnmn Рис " 17 " Развитие гидранта из ^xyiicici лириши боковой области полипа Corymor-выраженный ре- pha palma под влиянием радиаль-генерационный ных надрезов: I-надрезы; 2, 3, ттпттарр r пр 4-постепенное развитие гидран-процесс, в ре- та. (Из Чайлда.) зультате к-рого развивается целый орган (напр. голова животного; Леб, Чайлд) (рис. 17). От характера повреждения может зависеть атипичное течение Р. Так, при раздвоении ампутируемого органа возникают двойные образования. Положение регенерата также может зависеть от того, как производится ампутация, поскольку длинная ось возникающего регенерата обычно перпендикулярна к плоскости ампутации. Теории Р. Явление Р. стало известно очень давно. У ряда ученых древнего времени можно найти указания на знакомство с этим явлением. Однако систематические опыты, посвященные изучению Р., были поставлены уже ближе к современности. Реомюр (Reaumure) изучил регенерацию у рака, приписывая это явление наличию добавочных "зачатков органов (1721). Известны данные Тремблея на гидрах, относящиеся к 1744 году, установившие отчетливо выраженную регенерационную способность этого животного. Середина и конец 18 в. насчитывают еще ряд исследований по Р. Сюда относятся данные Бонне и Спалланцани (Bonnet, Spallanzani). Исследования" эти захватывают не только низших, но и ряд высших животных (позвоночные). В ближайшие затем годы изучение Р. продвигалось очень медленно. Лишь в конце 19 века начинается усиленное исследование регенерационных явлений, охватывающее самые различные типы животных. Изучение это характерно не только своей систематичностью и детальностью, но и тем, что исследователи уже значительно глубже проникают в сущность явления Р. Исследователи конца 19 в. много внимания уделяют выяснению связей регенерационного процесса, его необходимых условий и на этом материале строят соответствующие теории Р. Принципиальный подход этих авторов к изучению процесса получил свое обоснование в работах В. Ру и может быть назван каузально-аналитическим методом исследования. Характерными его чертами являются механистичность и формальность анализа явлений; моменты, приводящие к возникновению изучаемого явления, берутся не в процессе развития, а как неподвижные. Разлагая процесс на отдельные компоненты, выделяют основной компонент, который принимается за исходное, и само явление рассматривается как результат воздействия на эту основу различных условий. С другой стороны, т.к. направление процесса рассматривается изолированно от его движущих сил, то выделяется также на основании формального анализа отдельный фактор, ответственный за направление процесса. Т. о. источники развития и направления явления оказываются внешними по отношению к отдельным компонентам процесса. Поскольку источник развития выступает как внешний по отношению к остальным компонентам процесса, то неизбежен вопрос о том, чем вызывается развитие самого источника развития. Если в качестве последнего будет выделен какой-либо фактор, то вновь встанет вопрос об источнике развития этого нового фактора. Идя т. о., мы или должны притти к божественному первотолчку или ртказаться от окончательного разрешения вопроса. Вся неправильность каузально-аналитического метода ясно вытекает уже из этого его описания. Общность метода не мешает однако исследователям Р. расходиться между собой по ряду существенных вопросов, образуя т. о. различные лагери. Часть ученых, ближе примыкающая к самому Ру, стояла на точке зрения, носцвшей преформистский характер. Само развитие регенерата вызывается, по их мнению, раздражением, наносимым ампутацией. Направление Р. определяется в основном под воздействием резервных наследственных зачатков, которые т. о. представляют свойства будущего органа и, попадая при дальнейшем размножении клеток в различные участки регенерата, побуждают их к соответствующему развитию. Большинство из этих исследователей держалось одновременно той точки зрения, что каждая ткань регенерирующего органа образуется за счет подобной же ткани остатка органа, причем их развитие идет до известной степени независимо друг от друга (теория P. «Teil fur Teil»). Преформистекая, каузально-аналитическая теория Р. должна быть решительным образом отвергнута. Она исключает представление о действительном процессе новообразования, трактуя явление как осуществление уже ранее существовавшего. Преформистские представления исходят из предположения, что мы имеем в скрытом виде в лице наследственных зачатков предобразованную структуру будущего органа. Все это предположение носит крайне искусственный характер и стоит в противоречии с современными данными. Также рядом наблюдений было опровергнуто положение о независимом друг от друга развитии отдельных тканей регенерата за счет соответственных тканей культи. Наряду с указанным представлением возникает и другое, обоснование которого принадлежит Дришу (Driesch) и находится в резком противоречии с первым представлением. Дриш принимает, что регенерат не преформирован в регенерирующих частях, иначе пришлось бы предположить наличие в каждой части бесчисленных механизмов, соответствующих различным возможностям развития. Этот вывод основывается на том, что при самых различных уровнях ампутации возникает нормальный орган, следовательно один и тот же участок регенерата может развить в одном случае одно, в другом-другое образование. Дриш считает поэтому, что регенерат является однородным в смысле регенерационной способности отдельных его участков и лишен какой-либо структуры, предопределяющей будущее развитие. Различия между частями будущего органа обусловливаются не различиями частей регенерата, а неодинаковостью положения их в целом (регенерате). Отсюда известное положение Дриша, что судьба части зависит от ее положения в целом. Характер или сущность рассматриваемых различий обусловливается однако не положением в целом, а некиим нематериальным фактором, называемым Дришем энтелехией. Стремления энтелехии направлены на то, чтобы регенерат развивался в нужном для организма направлении. К признанию нематериальности фактора, обусловливающего направление Р., Дриш приходит путем исключения других возможных по его мнению объяснений, которые сводятся к грубо механистическим представлениям. Так. обр., по Дришу, картина регенерационного процесса рисуется в таком виде. Моментом, вызывающим Р., является неопределимое ближе нарушение организма, получающееся в результате ампутации и побуждающее организм к исправлению недостатка. Направление Р. обусловливается энтелехией, действующей целесообразно, и зависит поэтому от конечной цели Р., т. е. формы того органа, который должен образоваться. ■ Несомненная идеалистичность концепций Дриша не мешает ему оставаться механистом. Легко видеть, что метод, применяемый Дришем для объяснения явлений, это тот же каузально-аналитический метод Ру, но на этот раз служащий для обоснования виталистических концепций. Источник развития и у Дриша внешен по отношению к развивающемуся объекту, и развитие анализируется лишь в его формальной обусловленности. В результате такого анализа получается чисто формальное положение о зависимости различий от положения части. Сущность процесса Дриш думает понять, выделив особый фактор, Влияющий на характер явления,-энтелехию. Если в этой части построений Дриша его нельзя обвинить в недостатке хотя бы и формальной логичности, то этого нельзя сказать про его рассуждения по поводу деятельности энтелехии. Здесь сразу бросается в глаза предвзятость и надуманность теории Дриша. Разбив грубо механистическое воззрение и считая, что тем самым исключается всякое материалистическое понимание процесса, Дриш пытается объяснить явление Р. посредством введения нематериального начала. Такая позиция означает однако по существу лишь видимость объяснения, а на самом деле является отказом от последнего; место действительного изучения занимает деятельность воображения.-Уже очень скоро рядом исследований была показана непригодность теории Дриша для объяснения Р. и прямое противоречие ее с наблюдаемыми фактами. Было показано, что регенерационный процесс происходит независимо от того, является ли он целесообразным. Пересаженные органы регенерируют на необычном для них месте, давая там образования, нарушающие гармоничность организма, которая не может т. о. считаться той целью, к которой направлен регенерационный процесс. Вызывание регенерационного процесса на необычном месте путем приведения нерва показывает, что совсем не отсутствие органа является движущим моментом Р. и направление последней стоит в связи не с целесообразным, нематериальным началом, а с вполне материальными свойствами регенерирующей области. Кроме того так как образующийся орган никогда не бывает вполне подобен ранее существовавшему, а иногда и совсем непохож на него до стремление к «восстановлению утраченного» и вовсе может быть оспариваемо. Неудовлетворительность виталистических построений Дриша побудила исследователей искать иного разрешения регенерационной проблемы. В то же время и старое преформист-ское учение было в достаточной мере скомпрометировано. Этим объясняются попытки ио-г строения теорий Р., которые шли бы в ином направлении и были бы лишены недостатков старых. Наиболее разработанные в этом отношении теории принадлежат Гиено и Вейсу и относятся к 20-м годам 20 в. У эпигенетиков эти исследователи заимствуют представление об однородности в смысле потенций регенерационного материала, в то же время они считают, что развитие бластемы определяется тканями, расположенными непосредственно позади регенерата. Таким образом направление развития по мнению этих авторов вносится внешним по отношению к регенерату фактором, с другой стороны, таким фактором оказывается остаток ампутированного органа, т. е. вполне конкретный объект исследования, а не мистический потусторонний фактор, как это имеет место у Дриша. Возможность такого построения достигается тем, что противопоставляются друг другу две различные части регенерата: новообразованные ткани и старые, позади них лежащие. Первые объявляются на основании опытов пересадок лишенными до известного времени специфичности. Наоборот, последняя свойственна старым тканям. Вывод отсюда делается такой, что развитие новообразованных тканей совершается под влиянием старых; первые не обладают самостоятельным, заложенным в них направлением регенерации, оно индуцируется в них позади лежащими тканями, сообщающими бластеме свойственную им структуру. Это основное исходное положение получает то или иное развитие и оттенки в зависимости от того, к какому воззрению примыкает автор. Гиено, более близкий к преформизму, противопоставляет старой эпигенетической точке зрения о зависимости направления Р. от организма как целого идею о том, что организм представляет собой мозаику автономных областей, из которых каждая способна образовать лишь специфический, свойственный ей орган. Такие обособленные части организма Гиено называет «регенерационными территориями». Принимая, что специфичность развития сообщается регенерату позади лежащими тканями, Гиено пытается продолжить анализ и выяснить, какая именно часть этих тканей может считаться ответственной за направление Р. Так как ни одна из использованных в эксперименте тканей (нервы, мускулатура, скелет, кожа) не оказывается специфическим условием Р., то Гиено приходит к выводу, что или приходится приписать это свойство по методу исключения соединительной ткани или связать его с территорией как целым. Какое-либо из этих утверждений было бы с его точки зрения пока преждевременным. Иначе формулирует свои воззрения Вейс, более склоняющийся к эпигенетическим концепциям. Он также принимает, что новообразованные ткани не содержат никакой тенденции к развитию того или иного органа, они «нуллипотентны», неорганизованы. Всякая же организация, по Вейсу, может возникать лишь под влиянием уже организованного материала. Последним являются лежащие позади регенерата части. Влияние организованного материала на неорганизованный происходит не таким образом, что части его влияют независимо друг от друга - организованный материал влияет как целое, он несет «поле». Что такое представляет из себя регенерацион-ное поле по существу, Вейс не разъясняет; он указывает только на нек-рые чисто формальные свойства его, напр. возможность слияния двух «полей» в одно и т. д. Каждая область организма обладает своим специфичным «полем», так. образом организм и по Вейсу представляет собой мозаику «полей». Однако эта мозаика есть результат эмбрионального развития, результат разделения однородного некогда зародыша на независимые части или разделение общего «поля» зародыша на несколько «полей». То разрешение регенерационной проблемы, к-рое дается Гиено и Вейсом, никак не может считаться удовлетворительным. Их ошибка заключается опять-таки в механистичности анализа, в применении каузально-аналитического метода. Направление Р. исследуется ими не в связи с движущими силами регенерациоы-ного процесса, а независимо от них, изучается лишь его формальная обусловленность. Только формальный анализ позволяет делать из того положения, что регенерат до известного стадия неспецифичен, вывод о привнесении направления Р. извне, под влиянием позади лежащих тканей. Это достигается путем искусственного противопоставления частей регенерирую- щего участка, выставления их как внешних друг другу. - Легко показать, что разбираемые теории не разрешают противоречия эпигенетической и преформистской точек зрения. Представление об источнике развития как о части организма, внешней по отношению к рассматриваемому объекту, прямо не дискредитируется лишь, пока мы имеем дело с явлениями Р. Но если, логически продолжая ход рассуждений авторов, поставить вопрос о том, чем определяется развитие в исходном моменте онтогенеза, когда налицо недиференцирован-ное еще яйцо, то мы должны неизбежно или признать наличие какого-то внешнего по отношению к нему фактора или возвратиться к неразрешимым противоречиям прежней преформистской точки зрения. Затруднения, встающие перед разбираемой теорией, естественно сказываются в том, что мы не получаем все же объяснения регенерационному процессу. Гиено вовсе отказывается судить о сущности действия территории, «поле» же Вейса, несмотря на все стремления автора лишить его мистического характера, остается все же не более четким понятием, чем энтелехия Дриша, и несомненно указывает на виталистические тенденции Вейса. Упомянутые до сих пор теории характерны чисто мор фол. подходом к изучаемому объекту. Противоположность этой точке зрения представляет теория физиол. градиентов Чайлда. Чайлд ставит во главу угла своей теории различия в физиол. свойствах разных областей организма. Последние могут быть выявлены различными способами: изучением потребления кислорода, чувствительности по отношению к различным реагентам и т. д. Получающимся при этом количественным различиям Чайлд приписывает решающее значение в смысле влияния на развитие. Степень физиол. активности обусловливает собой появление того или иного образования. Чайлд т. о. заменяет односторонность морфол. точки зрения не менее односторонней физиологической, чисто количественной точкой зрения. Такое разрешение вопроса конечно также неудовлетворительно. Поскольку при Р. дело идет об образовании качественно различных органов, чисто количественное воззрение осуждено " на бесплодность. И действительно, связь между наличием того или иного градиента и возникновением определенного органа остается у Чайлда неясной. Далее, различия в физиол. активности различных участков имеют, по Чайлду, своим источником определенную область организма, от к-рой исходит необходимое влияние, имеющее энергетический характер. Возникновение же такой «доминирующей» области является результатом реакции протоплазмы на внешний по отношению к ней фактор. Рассматриваемое представление по существу не отвечает на неизбежно встающий вопрос, почему реакция носит именно данный характер. Теория Чайлда носит ту же печать механистичности и формального подхода к явлению, как и ранее разобранные, и поэтому не может дать правильного и непротиворечивого представления о процессе. Таким образом все рассмотренные нами теории Р. не могут быть признаны отвечающими действительности., Они не способны выявить движущие силы явления, моменты, его определяющие, давая неправильное представление о процессе. Вследствие того что исследователи Р. руководствовались ошибочным методом, добытые 18 ими результаты приходится истолковывать совсем иначе, чем они это делают. Приходится отрицать определяющую роль различных факторов," выделенных в результате изучения.Р., и признать эти факторы лишь условиями процесса. На этом представлении нельзя однако ограничиться; т. к. выделение этих условий в большинстве работ протекало с неправильной точки зрения, то выводы авторов могут быть оспариваемы в ряде моментов. С другой стороны, ясно, что нельзя успокоиться на позиции кондиционализма и надо выявить те определяющие отношения, к-рые лежат в основе регене-рационного процесса. Отсюда вытекает необходимость разработки диалектико-материалис-тической теории Р., к-рая одна только может дать глубокое познание явления. В наст, время мы не имеем еще такой теории, однако можно указать, что ее построение предполагает рассмотрение процесса в его самодвижении, не формальный анализ, а вскрытие реальных движущих сил процесса.Л. Лиознер. Регенерация у человека, так же как вообще у всех живых существ, бывает двух типов. А. Нормологическая, или фи зи о логическая Р. имеет место в повседневной нормальной жизни человека и проявляется в непрерывно совершающемся возмещении отживающих тканевых элементов новообразованными клетками. Она наблюдается в той или иной степени во всех тканях, в частности в костном мозгу постоянно идут регенеративные размножения и созревание эритроцитов, возмещающих отмирающие красные кровяные тельца; в покровном эпителии, в к-ром имеет место беспрерывное отъединение ороговевающих клеток, все время совершается возмещение их размножающимися клетками глубоких слоев эпителиального покрова.-Б. Патологическая Р. происходит в результате пат. гибели тканевых элементов. Процесс Р. в последнего рода случаях, собственно говоря, не является пат. процессом; пат. Р. отличается от нормологической Р. не по своему существу, а по своему масштабу и другим особенностям, связанным с характером предшествовавшей убыли тканевых элементов. Так как гибель тканевых элементов в результате различных пат. факторов представляет собой нечто, весьма отличающееся от физиол. отживания клеток как в количественном, так и в качественном отношениях, то отсюда и пат. Р. количественно и качественно тличается от нормологической Р. Проявления пат. Р. чаще всего связаны с воспалительным процессом и от последнего они неотделимы резкой границей; строго отграничить, чтб относится к воспалению и что к Р., часто невозможно; в частности проли-феративный фактор в воспалительной реакции весьма трудно отделить от регенеративного размножения клеток. Так или иначе всякое воспаление подразумевает последующую Р., хотя Р., как указывалось, может быть и не связана с воспалением. Ход процесса Р. бывает разным в зависимости от характера повреждения и способа гибели тканевых элементов. Если имело место действие фактора, вызвавшего наряду с повреждением воспалительную реакцию ткани, то обычно проявления Р. начинаются лишь после того, как острый период воспаления, сопровождающийся значительным нарушением жизнедеятельности ткани, стихает. Если в связи с повреждением или в результате развив- шегося воспалительного процесса произошло омертвение ткани, то Р. предшествует или с ней сочетаются про"цессы рассасывания мертвого материала; последние нередко протекают при участии воспалительной реакции. В противоположность этому, если гибель клеток является следствием дегенеративных и атро-фических изменений их, то Р. идет одновременно с этими некробиотическими процессами и не сопровождается воспалением; в частности в печени, в почках наряду с дегенерацией части паренхиматозных элементов можно видеть явления регенеративного размножения лучше сохранившихся клеток; при атрофии одной доли печени от давления, напр. эхинококком, в другой доле идет размножение клеток, нередко полностью покрывающее происходящую убыль печоночной ткани. В основе- Р. лежит размножение клеток, соответствующее нормальному делению их; при этом главное значение имеет непрямое, кариокинетическое (митотическое) деление клеток, тогда как прямое, амитотическое деление наблюдается редко. Кроме картин нормального кариокинеза при пат. Р. могут иметь место пат. формы мйтотического деления в виде абортивных, асимметрических, мультиполярных митозов и пр. (см. Кариокинез). В результате регенеративного размножения клеток образуются юные, незрелые клеточные элементы, которые в дальнейшем созревают, диференциру-ются, достигая той степени зрелости, которая свойственна нормальным клеткам данного вида. Если процесс Р. касается отдельных клеток, то морфологически он выражается в появлении среди ткани отдельных молодых клеточных форм. Если же дело идет о возрождении более или менее обширной тканевой территории, то в результате регенеративного размножения клеток происходит образование незрелой, индифе-рентной ткани зародышевого типа; эта ткань, состоящая в первое время лишь из юных клеток и сосудов, в дальнейшем диференцируется, созревает. Период незрелого состояния регенерирующейся ткани в зависимости от темпа процесса и от различных внешних условий может иметь разную продолжительность. В некоторых случаях весь процесс образования новой ткани идет постепенно, исподволь, причем новые тканевые элементы образуются и созревают не одновременно; при таких условиях, как это напр. бывает при разрастаниях межуточной ткани паренхиматозных органов (печень, почки, мышца сердца) в зависимости от атрофии паренхимы, период незрелого состояния ткани морфологически неопределим. Наоборот, в других случаях, именно, когда ткань данного района подвергается энергичному регенеративному разрастанию, образуется морфологически очевидная незрелая ткань, в дальнейшем созревающая в тот или иной период времени; наиболее демонстративным в этом смысле является разрастание грануляционной ткани. В большинстве регенеративных процессов осуществляется правило сохранения специфической производительности.тканей, т. е. то обстоятельство, что размножающиеся при Р. клетки образуют ту ткань, из которой это размножение исходит: размножение эпителия дает эпителиальную ткань, размножение соединительнотканных элементов образует соединительную ткань. Однако на основании данных о Р. у низших поз- воночных, а по отношению к человеку - данных, касающихся пат. Р., воспалительных разрастаний и опухолей, приходится допустить исключения из этого правила в виде возможности образования в нек-рых случаях из размножающегося и так сказать эмбрионализи-рующегося эпителия тканей мезенхимального характера (соединительной ткани, мышц, сосудов), а из соединительной ткани-развитие мышечных элементов, сосудов, элементов крови. Кроме того при регенерации в определенных тканевых группах (эпителий, соединительнотканные образования) может происходить изменение вида ткани, т. е. то, что именуется метаплазией (см.). Условно принято различать Р. полную и неполную. Полной Р., или реституцией" (restitut-io ad integrum) называют такое возрождение тканей, при к-ром на месте погибшей ткани образуется новая ткань, соответствующая той, к-рая была утрачена, напр. восстановление мышечной ткани при нарушении целости мышцы, восстановление эпителиального покрова при заживлении раны кожи. К неполной Р., или субституции относятся те случаи, когда дефект не заполняется тканью, подобной бывшей здесь раньше, а замещается разрастанием соединительной ткани, к-рая постепенно превращается в рубцовую ткань; в связи с этим неполная Р. обозначается еще как заживление посредством рубцевания. Очень нередко бывает так, что имеются признаки Р. специфических элементов данной ткани (напр. в поврежденной мышце образование из мышечных волокон «мышечных почек»), однако Р. не идет до конца и дефект замещается преимущественно соединительной тканью. Неполная Р. имеет место при б. или м.. значительных потерях вещества ткани, а также в тех случаях, когда или вследствие особенностей организации поврежденной ткани (см. ниже) или в связи с наличностью тех или иных неблагоприятных условий размножения специфических элементов данной ткани не происходит вовсе или же оно идет слишком медленно; при таких условиях разрастание соединительной ткани получает преобладание. Нужно отметить, что в действительности полная Р. в смысле восстановления ткани, ничем не отличающейся от прежней, нормальной ткани данного места, никогда не наблюдается. Новообразованная ткань, соответствующая в морфол. и фнкц. смысле прежней ткани, все же всегда в той или иной степени отличается от нее. Эти отличия иногда бывают небольшими (недоразвитие. отдельных элементов, нек-рая неправильность тканевой архитектуры); в других случаях они являются более существенными; например образование той же ткани, но упрощенного типа (т. н. гипотипия) или развитие ткани в меньшем объеме. Сюда же относятся случаи суперрегенерации, проявляющиеся у низших животных в образовании лишних органов, конечностей (см. выше), а у человека в так наз. перепроизводстве тканей; последнее заключается в том, что регенеративное разрастание ткани идет дальше границ дефекта и дает избыток ткани. Это наблюдается очень часто, напр. при повреждениях костей, когда избыточно новообразованная костная ткань выступает в виде утолщений, выростов, иногда весьма значительных; при Р. в эпителиальных покровах и железистых органах, когда размножающийся, эпителий образует весьма значительные разрастания, приближающиеся к проявлениям опухолевого роста, напр. атипические разрастания эпителия при Р. язв и ран кожи и слизистых оболочек, регенеративные аденомы в печени и почках при заболеваниях этих органов, сопровождающихся гибелью части их паренхимы. В большинстве случаев такая избыточно разросшаяся ткань бывает лишена фнкц. значения; иногда (в костях) она. в дальнейшем подвергается убыли путем рассасывания. Условия Р. у человека очень разнообразны и сложны. Среди них большое значение имеют те весьма многочисленные факторы с которыми связаны реактивные способности организма вообще; сюда относятся наследственно-конституциональные особенности организма, возраст, состояние крови и кровообращения, состояние питания и обмена веществ, функция эндокринной и вегетативной систем, а также и условия жизни и труда индивидуума. В зависимости от установок этих факторов Р. может итти тем или иным темпом, с той или иной степенью совершенства; у разных индивидуумов при повреждении одинакового типа Р. ткани может протекать нормергически, гиперергически, анергически или же вовсе отсутствовать. Важное значение для Р. имеют и местные условия со стороны той области, где происходит Р.: состояние в ней кровообращения, лимфообращения; отсутствие или наличие воспаления, особенно нагноения. Само собой понятно, что образование новых клеток может происходить лишь при достаточной! подвозе кровью питательного материала; далее размножение и созревание клеток не может происходить в тканях, находящихся в состоянии резкого воспаления.-Очень существенное значение для Р. имеет характер регенерирующейся ткани в смысле степени ее организации и специфической диференци-ровки, а также других особенностей строения и существования ткани. Чем выше развитие ткани, чем сложнее ее организация и диферен-цировка, чем специальнее ее функция, тем в меньшей степени ткань способна к Р.; и, наоборот, чем менее сложно построена и диферен-цирована ткань, тем в большей степени ей свойственны регенеративные проявления. Это правило обратной пропорциональности между способностью тканей к Р. и степенью их организации не является однако абсолютным; кроме степени диференцировки всегда имеют значение и другие биол. и структурные особен- v ности ткани; напр. клетки хряща гораздо в меньшей степени способны к Р., чем более сложно организованные клетки эпителия. В общем все же можно отметить, что напр. мало диференцированные клетки соединительной ткани, клетки покровного эпителия обладают большой способностью к Р., тогда как возможность регенеративного размножения таких высоко диференцированных элементов, как нервные клетки головного и спинного мозга, как мышечные волокна сердца, до сих Нор еще не доказана и сомнительна. На середине стоят клетки секреторного эпителия железистых органов и волокна произвольной мускулатуры, которым свойственна Р., но далеко не такая совершенная, как соединительной ткани и » покровного эпителия. То обстоятельство, что регенеративное размножение в большей степени свойственно менее зрелым и развитым клеткам, проявляется еще в том, что во вся- . кой ткани регенерация исходит из тех ее зон, в к-рых сохраняются менее зрелые элементы (в покровном э"пителии из базального или герминативного слоя, в железах - из.назальных частей выводных протоков, в кости-из эндоста и периоста); эти зоны принято называть проли-ферационными центрами или центрами роста. Регенерация отдельных тканей. Р. крови, напр. после кровопотерь, происходит таким образом, что сначала путем диффузии и осмоса через сосудистую стенку восстанавливается плазма крови, после чего в крови появляются новые, красные и белые кровяные тельца, к-рые возрождаются в костном мозгу и в лимфаденоидной ткани (см. Кроветворение).- --Р. кровеносных сосудов имеет важное значение потому, что она сопровождает Р. всякой ткани. Существуют два типа образования новых сосудов.-А. Чаще всего имеет место почкование старых сосудов, к-рое заключается в том, что в стенке мелкого сосуда происходит набухание клетки эндотелия и кариокинетическое деление ее ядра; образуется выбухающая кнаружи как бы почка (образование т. н. ангиобласта), к-рая в дальнейшем при продолжающемся делении ядер эндотелия вытягивается в длинный тяж; в последнем в направлении от старого сосуда к периферии появляется просвет, благодаря чему бывший сначала массивным тяж превращается в трубку, начинающую пропускать кровь. Образующиеся таким образом новые сосудистые веточки соединяются друг с другом, что дает образование сосудистых петель.-Б-. Второй тип новообразования сосудов называется аутогенным развитием сосудов. В основе его лежит образование сосудов непосредственно в ткани без связи с прежними сосудами; непосредственно среди клеток появляются щели, в к-рые открываются капиляры и изливается кровь, причем прилегающие клетки получают все признаки эндотелиальных элементов. Такой способ, сходный с эмбриональным развитием сосудов, может наблюдаться в грануляционной ткани, в опухолях и повидимому в организующихся тромбах. В зависимости от условий кровообращения новообразованные сосуды, имевшие сначала характер капиляров, в дальнейшем могут приобретать характер артерий и вен; образование прочих элементов сосудистой стенки, в частности гладких мышечных волокон, в таких случаях идет за счет размножения и диференцировки эндотелия. Образование новой соединительной ткани имеет место в качестве регенеративного проявления при повреждениях самой Соединительной ткани и кроме того как выражение неполной Р. (см. выше) самых разнообразных других тканей (мышечной, нервной и пр.). Кроме того новообразование соединительной ткани наблюдается при весьма разнообразных пат. процессах: при т.н. продуктивных воспалениях, при исчезании паренхиматозных элементов в органах вследствие их атрофии, дегенерации и некроза, при заживлении ран, при процессах организации (см.) и инкапсуляции (см.). При всех этих условиях сначала происходит образование юной, незрелой грануляционной ткани (см.), подвергающейся созреванию до степени зрелой соединительной ткани. -Р. жировой ткани происходит из ядросодержащих остатков протоплазмы жировых клеток или же путем превращения в жировые клетки обычных клеток соединитель- ной ткани. В том и другом случае сначала образуются округлые клетки-липобласты, протоплазма к-рых выполнена массой мелких жировых капелек; в дальнейшем эти капельки сливаются в одну крупную каплю, отодвигающую ядро к периферии клетки. Р. костной тк.ани при повреждениях кости имеет в основе размножение остеобластов эндоста и камбиального слоя периоста, к-рые вместе с новообразованными сосудами образуют остеобластическуюгрануляционную ткань. При костных переломах (см.) эта остеобластическая ткань формирует т. н. провизорную (предварительную) костную мозоль. В дальнейшем между остеобластами появляется плотное,- однородное вещество, благодаря чему новообразованная ткань приобретает свойство остеоид-ной ткани; последняя, петрифицируясь, превращается в костную ткань. При переломах это совпадает с образованием дефинитивной (окончательной) костной мозоли. При фнкц. нагрузке устанавливается определенная архитектура новообразованной костной ткани, что сопровождается рассасыванием лишних частей и образованием новых (перестройка кости).- Хрящевая ткань способна к Р. в сравнительно слабой степени, причем хрящевые клетки в регенеративных проявлениях участия не принимают. При небольших повреждениях хряща происходит размножение клеток глубокого слоя надхрящницы, называемых хонд-робластами; вместе с новообразованными сосудами эти клетки образуют хондробластйчес-кую грануляционную ткань. Между клетками последней вырабатывается основное вещество хряща; часть клеток «атрофируется, исчезает, другая часть превращается в хрящевые клетки. Крупные дефекты хряща заживают рубцеванием.-Р. мышечной ткани-см. Мышцы. Эпителиальная ткань, особенно покровный эпителий кожи, слизистых оболочек, серозных покровов, в высокой степени способна к Р. При дефектах в многослойном плоском эпителии кожи и слизистых оболочек образуется новая эпителиальная ткань, являющаяся продуктом кариокинетического деления клеток зародышевого слоя сохранившегося эпителия. Образующиеся юные эпителиальные клеточки надвигаются на дефект и покрывают его сначала одним слоем низких клеток; в дальнейшем при продолжающемся размножении этих клеток формируется многослойный покров, в к-ром идет созревайие и диференцировка клеток, соответствующая структуре обычного многослойного плоского эпителия. На слизистых оболочках, покрытых цилиндрическим эпителием, дефекты замещаются, надвигающимися эпителиальными клеточками, являющимися продуктами размножения клеток сохранившихся желез (в кишечнике-Либеркюнрвых, в матке-маточных желез); здесь точно так же дефект сначала покрывается низкими, незрелыми клетками, к-рые в дальнейшем созревают, делаются высокими, цилиндрическими. При Р. слизистой оболочки матки и кишечника из такого эпителиального покрова при продолжающемся размножении его клеток образуются трубчатые железы. Плоский эпителиальный покров серозных оболочек (брюшины, плевры, перикарда) восстанавливается при посредстве кариокинетического деления сохранившихся клеток; при этом в первое время новообразованные клетки имеют более крупные размеры и кубическую форму, а потом уплощаются. ■Й57 По отношению к Р. железистых органов надо отличать, с одной стороны, гибель и возрождение лишь железистого эпителия при сохранении основной структуры органа, а с другой стороны-повреждение с последующей Р. всей ткани органа в целом. Р. эпителиальной паренхимы железистых органов после частичной гибели ее вследствие некроза и перерождений происходит весьма совершенно. При различных перерождениях и некрозе, напр. эпителия печени, почек, сохранившиеся клетки подвергаются кариокинетическому (реже прямому) делению, благодаря чему и происходит замещение утраченных элементов равноценными железистыми клетками. Возрождение частей железистых органов в целом более сложно и в общем бывает очень редко совершенным. В нек-рых железах, напр. щитовидной железе и в слезных железах, иногда наблюдают образование отпрысков от сохранившейся железистой ткани и образование новых железистых ячеек. В других органах возрождение бывает гораздо более слабым; часто над ним преобладают процессы гипертрофии и гиперплазии сохранившихся эпителиальных элементов. В. частности в печени при гибели ее ткани происходит размножение и одновременно увеличение объема печоночных клеток только в пределах сохранившихся долек; на разрезе такой печени невооруженным глазом в соответствующих местах часто бывает заметен более крупный рисунок строения долек. В общем такие процессы размножения и увеличения объема клеток в сохранившейся печо-ночной ткани могут достигать очень большой степени; есть наблюдения, указывающие, что при постепенном изъятии 2 / 3 частей печени сохранившаяся треть ее может дать увеличение объема, покрывающее вышеуказанную убыль. В противоположность этому образования" новой печоночной ткани в целом, т. е. новых долек с их системой капиляров и пр., никогда не наблюдается. Очень часто имеет место новообразование желчных протоков, дающих многочисленные новые веточки; на концах последних клетки часто подвергаются увеличению в объеме и начинают напоминать печоночные клетки, но дальше этого развитие их не идет. В почках при гибели их ткани, напр. при образовании инфаркта, новая почечная ткань не образуется вовсе; лишь иногда наблюдается образование небольших отпрысков от канальцев. Вместе ■с тем может происходить увеличение объема клубочков и канальцев в сохранившихся отделах почки. При Р. эпителиальной ткани нередко происходит значительная перестройка ее, т. е. изменение формы и взаимоотношений структурных частей. Иногда имеет место метаплазия; часто встречгется перепроизводство ткани в виде атипических разрастаний эпителия (см. выше). В нервной ткани Р. в очень разной степени касается собственно нервных элементов и невроглии. Возрождения погибших нервных клеток в сформированной центральной нервной системе человека повидимому не происходит вовсе; лишь изредка описывались- не вполне убедительные картины как бы начинающегося деления ядер этих клеток. Ганглиозные клетки симпат. нервной системы в молодом организме могут размножаться, однако это имеет место весьма редко. Все потери вещества в центральной нервной системе заживают посредством заполнения дефекта разрастающейся тканью нев- роглии, которая в высокой степени способна к регенеративным проявлениям, особенно т. н. мезоглия. Кроме того крупные дефекты в мозговой ткани могут выполняться соединительной тканью, разрастающейся из мозговых оболочек или из окружности кровеносных сосудов. Р. периферических нервов-см. Нервные волокна, регенерация нервных волокон. а. Абрикосов. Лит.: Астрахан В., Материалы к изучению закономерностей в процессе регенерации, Москва, 1929; Давыдов К., Реституция у немертин, Труды Особого зооп. каб. и Севастопольской биол. станции, Академия наук, серия 2, № 1, 1915; Леб Ж., Организм как целое, Москва-Ленинград, 1920; Korschelt E., Regeneration und Transplantation, Band I, Berlin, 1927; Morgan Т., Regeneration, New York, 1901; Scha-xel J., Untersuchungentiber die Formbildung der Tiere, Band I - Auff assungen und Erscheinungen der Regeneration, Arb. aus dem Gebiete der experiment. Biologie, Heft 1, 1921.

Министерство здравоохранения РФ

Кировский государственный медицинский институт

Кафедра медицинской биологии и генетики

РЕГЕНЕРАЦИЯ ОРГАНОВ И ТКАНЕЙ

БИОЛОГИЧЕСКИЕ И

МЕДИЦИНСКИЕ АСПЕКТЫ

Учебно-методическое пособие

Для студентов медицинских вузов

КИРОВ - 1998

УДК 57 (075.4)

Печатается по разрешению редакционно-издательского совета Кировского государственного медицинского института

Регенерация органов и тканей. Биологические и медицинские аспекты. Учебно-методическое пособие для студентов медицинских вузов. /Составитель зав. кафедрой медицинской биологии и генетики Кировского государственного медицинского института, доктор медицинских наук А.А. КОСЫХ/ - Киров: Кировский государственный медицинский институт, 1998 г., 30 с. - Библиогр. в конце.

Учебно-методическое пособие предназначено для студентов медицинских вузов. В пособии кратко изложены биологические и медицинские аспекты регенерации, способы и механизмы регенерации нормальных и патологически измененных органов и тканей, значение регенерации для биологии и медицины, дано понятие структурного гомеостаза.

Список литературы 33 названия.

Рецензенты:

Ответственный редактор - доктор медицинских наук А.А. Косых

Технический редактор - Г.В. Мамаева

© Косых А.А., 1998.

Введение

Учебно-методическое пособие предназначено для студентов медицинских вузов и составлено в соответствии с программой по биологии, утвержденной Управлением учебных заведений Минздравмедпрома РФ 24.01.1995 г.

В пособии даны биологические и медицинские аспекты восстановительных процессов в организме и понятие структурного гомеостаза. Разбираются молекулярно-генетические, клеточные и системные механизмы регенерации нормальных и патологически измененных органов и тканей, вопросы стимуляции регенерационных процессов и значение регенерации для биологии и медицины.

Издание данного пособия обусловлено насыщенностью программного материала по биологии и недостатком аудиторных часов для его глубокого изучения. Пособие является основой для подготовки к семинарским занятиям по медицинской биологии и генетике. В конце пособия даются темы докладов для студентов, вопросы для подготовки и перечень основных источников информации по данным проблемам.

Глава 1. Понятие о регенерации. Физиологическая и репаративная регенерация.

Жизнь организма, работа его различных систем, органов, отдельных клеток, все многообразие их реакций на внешние воздействия сопровождаются заменой старых структур новыми, их обновлением или регенерацией. Регенерация является материальной основой процессов адаптации и компенсации нарушенных функций, которые обеспечивают сохранение гомеостаза в меняющихся условиях среды.

Регенерация (от лат. regeneratio - возрождение, восстановление) - совокупность процессов, направленных на восстановление организмом утраченных или поврежденных частей тела, органов или биологических структур. Регенерация является одним из замечательных и удивительных свойств организма. Способность к регенерации - это биологическое явление, присущее всему живому, это один из важных факторов существования и приспособительного развития организмов во внешней среде. Без этой способности сохранение жизни на Земле было бы невозможно, т.к. любое незначительное повреждение или заболевание привело бы к гибели животного.

Пресноводную гидру, планарию или немертину можно разрезать на 100 и более частей, каждая из которых способна регенерировать целый организм. Подобным же образом растения можно размножить черенками. Целые растения могут регенерировать даже из отдельных клеток. (Рис. 1).

Рис. 1. Регенерация целого растения у бегонии (по Э.Либберту, 1982)

1. - изолированный лист с регенерировавшими придаточными растениями.

2. - дедифференцировка клетки эпидермиса в меристему, из которой затем разовьется придаточное растение.

Явление регенерации известно давно и привлекало к себе внимание людей еще в глубокой древности. Например, была известна способность ящерицы оставлять свой хвост в руках поймавшего и потом восстанавливать его. Кузнечик, схваченный за ногу, отрывает ее. Схваченная голотурия разрывается пополам, заяц оставляет в пасти волка клок кожи, осьминог мощным сокращением мускулатуры может отрывать схваченное щупальце и т.д. Такая способность животных самопроизвольно отторгать части тела с последующим восстановлением называется автотомией (самокалечением). Она помогает животным выжить за счет потери части тела или органа.

Первое научное описание регенерационного процесса дал Реомюр (Reaumer) в 1712 г. для конечностей речного рака. В 1742 г. Трамбле описал регенерацию гидры. С исследованиями Бонне (Bonnet, 1745) по регенерации червей, насекомых и слизней, саламандры, а также публикацией Spallanzani (1769) была заложена основа для научного изучения регенерации.

Восстановление частей клеток и тканей, происходящее в процессе нормальной физиологической деятельности организма, называется физиологической регенерацией. Примером физиологической регенерации может служить восстановление слущивающегося эпителия кожи, слизистой оболочки желудочно-кишечного тракта и т.д.

Вопрос о физиологической регенерации стал привлекать внимание исследователей, когда выяснилось, что деление клеток происходит путем митоза. Обнаружение митозов в тканях взрослых животных, у которых процессы развития уже закончились, приводило к мысли о клеточном обновлении, т.е. физиологической регенерации.

Одним из первых исследователей, обративших внимание на физиологическую регенерацию, был Flemming. Flemming с сотр. (1885) в ряде работ на различных млекопитающих изучили физиологическую регенерацию лимфатических узлов, эпителия воздухоносных путей и других органов.

Значительный подъем интереса к проблеме физиологической регенерации появился в конце 40-х и начале 50-х годов XX века и связан с именами отечественных ученых М.А. Воронцовой, А.Н. Студитского, Л.Д. Лиознера, Л.В. Полежаева, Б.П. Солопаева. Все эти исследователи считают физиологическую регенерацию универсальным явлением, свойственным всем организмам и всем тканям без исключения, независимо от степени их дифференцировки.

В процессе жизнедеятельности обязательно происходит утрата и восстановление отдельных структур организма. У млекопитающих и человека непрерывно отмирают и слущиваются наружные слои кожного эпителия, эпителия кишечника. Продолжительность жизни клеток кишечного эпителия составляет всего несколько дней. Быстро сменяются клетки крови. Средняя продолжительность жизни эритроцитов около 125 дней, лейкоцитов – от нескольких дней до 10 и более лет. Каждую секунду в организме человека разрушается от 2 до 10 млн. эритроцитов и одновременно в костном мозге образуется столько же.

На течение физиологической регенерации влияют внешние и внутренние факторы. Так, понижение атмосферного давления вызывает увеличение количества эритроцитов в крови. Поэтому у людей, живущих в горах, содержание эритроцитов выше, чем у живущих в долинах.

Регенерация, проявляющаяся при утрате частей организма, при повреждении или поражении в результате заболевания, называется репаративной.

В зависимости от уровня структурной организации, на котором осуществляется восстановление, различают внутриклеточную, тканевую, органную и организменную регенерацию.

Теоретические основы внутриклеточной регенерации успешно разрабатывает академик РАМН Д.С. Саркисов и его школа. Внутриклеточная регенерация охватывает процессы восстановления клеточных органелл (цитоплазматические мембраны, митохондрии, ЭПС и др.). Она свойственна клеткам всех органов без исключения и является универсальной формой восстановления. Примером регенерации тканей может быть восстановление мышечной, костной и эпителиальной тканей. Восстановление целого органа со всеми составляющими его тканями, например печени, которая состоит из эпителиальной и соединительной ткани, является органной регенерацией. Восстановление целого организма из части, например, гидры из кусочка, будет составлять организменный уровень регенерации. Регенерация, по выражению М.А. Воронцовой (1949) является процессом вторичного развития тканей и органов, вызванным повреждением. Этим регенерация отличается от эмбрионального развития. В результате повреждения ткани животных вновь вступают на путь развития. Для того чтобы клетки приступили к развитию, они должны испытать повреждение, утратить свое устойчивое состояние, т.е. претерпеть дедифференцировку. В результате этого клетки становятся по своей структуре ближе к эмбриональным малодифференцированным. Однако, как правило, при регенерации специфичность тканей у позвоночных сохраняется.

В основе механизма физиологической и репаративной регенерации любой ткани и органа лежат клеточные реакции - пролиферация (деление клеток митотическим путем), дифференцировка и адаптация . За счет этих процессов восстанавливается количество функционирующих клеток. Восстановление может осуществляться путем гипертрофии, т.е. увеличения числа клеток (гиперплазии) или их объема за счет полиплоидии и внутриклеточной регенерации. В некоторых тканях источником регенерации (регенерационным материалом) могут быть камбиальные клетки . Это малодифференцированные клетки с большими потенциями к развитию, служащие источником образования специализированных клеток. Такими, например, являются клетки мальпигиевого слоя кожи, клетки эпителия крипт кишечника, клетки сателлиты в поперечно-полосатой мускулатуре. В процессе репаративной регенерации органов, обновляющихся при помощи камбиальных клеток, трудно разграничить долю пролиферации, обусловленную физиологической регенерацией поврежденного органа, или уровнем митотической активности, который определяется объемом удаленной ткани и характером операции. В этих случаях репаративная и ускоренная физиологическая регенерация являются выражением единого компенсаторно-восстановительного процесса, направленного на ликвидацию последствий повреждения.

Источником регенерации могут быть стволовые клетки , являющиеся резервом для пополнения дифференцированных клеток (кроветворные клетки эритробласты, сперматогонии в семенниках и др.). В обычных условиях они находятся вне пролиферативного пула (митотического цикла) в G 0 -периоде (периоде покоя). Эти клетки находятся в организме на всем протяжении жизни.

Медленно обновляющиеся органы и ткани (печень, почки, легкие, надпочечники, поджелудочная железа) восстанавливаются за счет митотического деления дифференцированных клеток. При этом клетки, вступающие в митоз, частично могут претерпевать дедифференцировку, но сохранить наследственные потенции. Например, после резекции 30% массы печени у взрослых крыс первые митозы гепатоцитов появляются через 20 часов. Максимальные значения митотического индекса в печени наблюдаются через 28-30 часов. Через двое суток масса оставшейся после операции части печени удваивается, а через 1-2 недели регенерирующая печень достигает массы контрольных не оперированных животных. Таким образом, происходит полная компенсация того, что было удалено.

Высокой полипотентностью обладают недифференцированные клетки соединительной ткани: они дифференцируются в разные типы зрелой соединительной ткани - в фиброзную, жировую, гладкомышечную, хрящевую, костную. Считается, что такой способностью обладают мезенхимные клетки стенок мелких сосудов (перициты, адвентициальные клетки)

Дифференцированные клетки определенной ткани после соответствующей структурно-функциональной перестройки митотически делятся и дают начало новым клеткам. В процессе тонкой предмитотической внутренней перестройки эти клетки не утрачивают своей специфической тканевой дифференцировки, не упрощаются в своем строении, как бы возвращаясь к эмбриональному состоянию.

Наконец, органы и ткани, которые в физиологических условиях не размножаются митозом (нервные клетки), восстанавливаются за счет внутриклеточной регенерации. Всестороннее изучение закономерностей внутриклеточной регенерации показало, что в одноименных органеллах клеток различных органов (миокард, печень, легкие, почки, поджелудочная железа, нервная система и др.) она протекает стереотипно. Процесс нормализации строения органелл после прекращения патогенного воздействия не зависит от вызвавшего это повреждение фактора (гипоксия, ожог, токсины, лучевое воздействие, механическая травма и т.д.). Наблюдаемые при этом особенности имеют скорее количественный, чем качественный характер. Возникающая гипертрофия клетки (увеличение ядра и числа органелл) обеспечивает дефицит функционирующих структур. На примере регенерации печени после резекции показано, что в раннем предмитотическом периоде происходит перепрограммирование генома гепатоцитов (О.М. Платонов, 1989). Одним из наиболее ранних проявлений изменения генетической информации служит появление в цитоплазме клетки "фактора регенерации". Механизм действия "фактора" заключается в переводе неактивной формы ядерной РНК-полимеразы в активное матричное связанное состояние. Предполагается, что это полипептидный фактор и синтезируется он на митохондриальных рибосомах сразу же после частичной гепатэктомии.

Непрерывное обновление клеточного состава органов и внутриклеточных структур каждой отдельной клетки в целостном организме имеет сложную регуляцию. Эта регуляция обеспечивается взаимно дополняющими друг друга нервными, гормональными, гуморальными, иммунными механизмами по принципу антагонистических влияний. При этом одни влияния оказывают стимулирующий, а другие - тормозящий эффект. Благодаря этим влияниям живая система быстро восстанавливает оптимальное состояние внутренней среды, нарушенное чрезвычайными раздражителями. Утрата такой способности организма приводит к болезни (гипертония-гипотония; понижение-повышение свертываемости крови; остеосклероз-остеопороз и т.д.)

Регенерация может осуществляться следующими способами:

1. Эпиморфоз - отрастание утраченного органа от раневой поверхности. Например, ампутированная конечность тритона. На месте удаления части органа образуется регенерационный узелок - регенерационная бластема, из которой в дальнейшем развивается недостающая конечность. (Рис.2).

2. Морфаллаксис - перегруппировка клеток оставшейся части органа и превращение его в целый орган, но меньших размеров. Например, ампутированная конечность таракана, восстановление целой планарии из части. (Рис. 3)

3. Регенерационная гипертрофия или эндоморфоз (М.А. Воронцова. 1953) - восстановление, идущее внутри органа. При этом восстанавливается не форма, а масса органа. Этим способом восстанавливаются, как правило, внутренние органы высших животных и человека. При этом масса органа увеличивается за счет пролиферации (размножения) специфических клеточных элементов диффузно или мелкими очагами. Раневая поверхность закрывается рубцом. (Рис.4)

4. Регенерация путем индукции (Л.И. Полежаев, 1977) - восстановление дефекта путем внесения в него измельченных тканей. Например, при регенерации костей свода черепа у собак определяющим является индукция кости в области дефекта черепа из мигрировавших незрелых клеток соединительной ткани под влиянием веществ, выделяющихся из пересаженных костных опилок.

5. Рубцевание - так же является одним из способов регенерации. При этом закрытие раны происходит без восстановления утраченного органа.

Эпиморфоз и морфаллаксис относятся к типичной регенерации (гомоморфоз). При этом восстановление утраченного органа или его части происходит полностью. Другие способы относятся к атипичной регенерации , когда вместо утраченного органа развивается соединительно-тканый рубец (рубцевание). Например, на месте глубоких ожогов может быть массивное разрастание плотной соединительной рубцовой ткани, а нормальная структура кожи не восстанавливается.

После перелома кости при отсутствии совмещения обломков ее нормальное строение не восстанавливается, а разрастается хрящевая ткань, образуя ложный сустав.

Другим примером атипичной регенерации является регенерация антенны вместо глаз у рака, или хвост вместо конечности у ящерицы (гетероморфоз).

1

Бадертдинов Р.Р.

В работе приводится краткий обзор достижений регенеративной медицины. Что представляет из себя регенеративная медицина, насколько реально применение ее разработок в нашей жизни? Как скоро мы сможем воспользоваться ими? На эти и другие вопросы сделана попытка ответить в данной работе.

регенерация

регенеративная медицина

стволовые клетки

цитогены

восстановление

генетика

наномедецина

геронтология

Что мы знаем о регенеративной медицине? Для большинства из нас тема регенерации и все, что с этим связано, прочно ассоциируется с фантастическими сюжетами художественных фильмов. И действительно, из-за малой информированности населения, что весьма странно, учитывая неизменную актуальность и жизненную важность данного вопроса, у людей сложилось достаточно устойчивое мнение: репаративная регенерация - это выдумки сценаристов и писателей-фантастов. Но так ли это? Действительно ли возможности регенерации у человека чей-то вымысел, с целью создать более изощренный сюжет?

До недавнего времени считалось, что возможность репаративной регенерации организма, происходящей после повреждения или утраты какой-либо части тела, была утеряна практически всеми живыми организмами в процессе эволюции и, как следствие, усложнения строения организма, кроме некоторых существ, включая амфибий. Одним из открытий, сильно поколебавшим этот догмат, стало обнаружение гена р21 и его специфических свойств: блокирование регенеративных возможностей организма, группой исследователей из Вистарского Института, штат Филадельфия, США (The Wistar Institute, Philadelphia).

Эксперименты на мышах показали, что организм грызунов, с отсутствующим геном р21 может регенерировать утраченные или поврежденные ткани. В отличие от обычных млекопитающих, у которых раны заживляются путем образования шрамов, у генетически модифицированных мышей с поврежденными ушами на месте раны образуется бластема - структура, связанная с быстрым ростом клеток. В ходе регенерации из бластемы образуются ткани восстанавливающегося органа.

По словам ученых, при отсутствии гена р21 клетки грызунов ведут себя как регенерирующие эмбриональные стволовые клетки. А не как зрелые клетки млекопитающих. То есть, они скорее выращивают новую ткань, чем восстанавливают поврежденную. Здесь будет уместно вспомнить, что такая же схема регенерации присутствует и у саламандр, обладающих возможностью отращивать заново не только хвост, но и утерянные конечности, или у планарий, ресничных червей, которых можно разрезать на несколько частей, и из каждого кусочка вырастет новая планария.

По осторожным замечаниям самих исследователей, следует вывод, что теоретически, отключение гена р21 может запускать аналогичный процесс и в человеческом организме. Безусловно, стоит отметить и тот факт, что ген р21 тесно связан с другим геном, р53. который контролирует деление клеток и препятствует образованию опухолей. В обычных взрослых клетках организма р21 блокирует деление клеток в случае повреждения ДНК, поэтому у мышей, у которых он был отключен, больше риск возникновения рака.

Но хотя исследователи действительно обнаружили большие повреждения ДНК в ходе эксперимента, они не нашли следов рака: напротив, у мышей усилился механизм апоптоза, программируемого «суицида» клеток, который также защищает от возникновения опухолей. Такая комбинация может позволять клеткам делиться быстрее, не превращаясь в «раковые».

Избегая далеко идущих выводов, все же отметим, что сами исследователи говорят лишь о временном отключении этого гена с целью ускорения регенерации: «While we are just beginning to understand the repercussions of these findings, perhaps, one day we´ll be able to accelerate healing in humans by temporarily inactivating the p21 gene». Перевод: «В данный момент мы только начинаем понимать все последствия наших открытий, и возможно, когда-нибудь мы сможем ускорять исцеление людей, временно инактивируя ген р21» .

И это лишь один из многих возможных путей. Рассмотрим другие варианты. Например, один из наиболее известных и раскрученных, отчасти с целью получения большой прибыли различными фармацевтическими, косметическими и другими компаниями - стволовые клетки (СК). Наиболее часто упоминаются при этом эмбриональные стволовые клетки. Об этих клетках слышали многие, с их помощью зарабатываются большие деньги, многие приписывают им поистине фантастические свойства. Так что же они из себя представляют. Попробуем внести некоторую ясность в этот вопрос.

Эмбриональными стволовыми клетками (ЭСК) называют ниши непрерывно размножающихся стволовых клеток внутренней клеточной массы, или эмбриопласта, бластоцисты млекопитающих. Из этих клеток может развиваться любой тип специализированных клеток, но не самостоятельный организм. Эмбриональным стволовым клеткам функционально эквивалентны линии эмбриональных зародышевых клеток, полученных из первичных клеток эмбриона. Отличительные свойства эмбриональных стволовых клеток - возможность поддерживать их в культуре в недифференцированном состоянии в течение неограниченного времени и их способность развиваться в любые клетки организма. Способность ЭСК давать начало большому количеству различных типов клеток делает их полезным инструментом базовых научных исследований и новым источником клеточных популяций для новых методов терапии. Термин «линия эмбриональных стволовых клеток» относится к ЭСК, которые в течение долгого времени (месяцев и лет) поддерживались в культуре в лабораторных условиях, при которых происходила пролиферация без дифференцировки. Есть несколько хороших источников базовой информации о стволовых клетках, хотя опубликованные обзорные статьи быстро устаревают. Один из полезных источников информации - сайт Национальных институтов здоровья США (National Institutes of Health (NIH), USA) .

Характеристики различных популяций стволовых клеток и молекулярные механизмы, которые поддерживают их уникальный статус, все еще изучаются. На данный момент выделяют два основных типа стволовых клеток - это взрослые и эмбриональные стволовые клетки. Выделим три важных особенности, которые отличают ЭСК от клеток других типов:

1. ЭСК экспрессируют такие факторы, связанные с плюрипотентными клетками, как Oct4, Sox2, Tert, Utfl и Rex1 (Carpenter and Bhatia 2004).

2. ЭСК - это неспециализированные клетки, которые могут дифференцироваться в клетки со специальными функциями.

3. ЭСК могут самообновляться путем многократных делений.

ЭСК поддерживаются in vitro в недифференцированном состоянии путем точного соблюдения определенных условий культивирования, которые включают присутствие препятствующего дифференцировке фактора ингибирования лейкемии LIF (leukemia inhibitory factor). Если LIF удалить из среды, ЭСК начинают дифференцироваться и образуют сложные структуры, которые называются эмбриональными телами и состоят из клеток различного типа, в том числе эндотелиальных, нервных, мышечных и гемопоэтических клеток - предшественников .

Отдельно остановимся на механизмах работы и регуляции стволовых клеток. Особые характеристики стволовых клеток определяются не одним геном, но целым их набором. Возможность идентификации этих генов непосредственно связана с разработкой метода культивирования эмбриональных стволовых клеток in vitro, а также с возможностью использования современных методов молекулярной биологии (в частности, использование фактора ингибирования лейкемии LIF).

В результате совместных исследований компаний Geron Corporation и Celera Genomics были созданы библиотеки кДНК недифференцированных ЭСК и частично дифференцированных клеток (кДНК получают путем синтеза на основе молекулы иРНК, комплиментарной молекулы ДНК при помощи фермента обратной транскриптазы). При анализе данных по секвенированию нуклеотидных последовательностей и экспрессии генов было выявлено более 600 генов, включение или выключение которых отличает недифференцированные клетки, и составлена картина молекулярных путей, по которым идет дифференцировка этих клеток.

В настоящее время принято отличать стволовые клетки по их поведению в культуре и по химическим маркерам на клеточной поверхности. Однако, гены, ответственные за проявление этих особенностей, в большинстве случаев остаются неизвестными. Тем не менее, проведенные исследования позволили выделить две группы генов, придающих стволовым клеткам их замечательные свойства. С одной стороны, свойства стволовых клеток проявляются в определенном микроокружении, известном как ниша стволовых клеток. При изучении этих клеток, которые окружают, питают и поддерживают стволовые клетки в недифференцированном состоянии, было обнаружено около 4000 генов. При этом указанные гены были активны в клетках микроокружения, и неактивны во всех других
клетках .

При исследовании зародышевых стволовых клеток яичников дрозофилы, была определена система сигналов между стволовыми клетками и специализированными клетками «ниши». Эта система сигналов определяет самообновление стволовых клеток и направление их дифференцировки. Регуляторные гены в клетках ниши дают инструкции генам стволовых клеток, определяющим дальнейший путь их развития. И те, и другие гены производят белки, действующие как переключатели, запускающие или останавливающие деление стволовых клеток. Было обнаружено, что взаимодействие между клетками ниши и стволовыми клетками, определяющее их судьбу, опосредованно тремя различными генами - piwi, pumilio (pum) и bam (bag of marbles). Показано, что для успешного самообновления зародышевых стволовых клеток должны быть активизированы гены piwi и pum, тогда как ген bam необходим для дифференцировки. Дальнейшие исследования показали, что ген piwi входит в группу генов, вовлеченных в развитие стволовых клеток различных организмов, принадлежащих как к животному, так и к растительному царствам. Гены, подобные piwi (они называются, в данном случае, MIWI и MILI), pum и bam, есть и у млекопитающих, в том числе и у людей. Основываясь на этих открытиях, авторы предполагают, что ген клеток ниши piwi, обеспечивает деление зародышевых клеток, и поддерживает их в недифференцированном состоянии, подавляя экспрессию гена bum .

Следует отметить, что база данных по генам, определяющим свойства стволовых клеток, постоянно пополняется. Полный каталог генов стволовых клеток может улучшит процесс их идентификации, а также прояснить механизмы функционирования этих клеток, что обеспечит получение дифференцированных клеток, необходимых для терапевтического применения, а также позволит получить новые возможности для разработки лекарств. Значение этих генов велико, так как они обеспечивают организму возможность сохранять себя и регенерировать ткани.

Здесь у читателя может возникнуть вопрос: «А насколько далеко продвинулись ученые в практическом применении этих знаний?». Используются ли они в медицине? Имеются ли перспективы дальнейшего развития у этих направлений? Чтобы ответить на эти вопросы, проведем небольшой обзор по научным разработкам в данном русле, как старым, чему не нужно удивляться, ведь исследования в области регенеративной медицины ведутся давно, минимум с начала 20 века, так и совсем новым, подчас весьма необычным и экзотическим.

Для начала отметим, что еще в 80-е годы 20 века в СССР в Институте эволюционной экологии и морфологии животных им. Северцева АН СССР, в лаборатории А.Н. Студицкого проводились эксперименты: измельченное мышечное волокно пересаживалось в поврежденный участок, которое впоследствии восстанавливаясь, заставляло регенерировать нервные ткани. Были сделаны сотни успешных операций на человеке.

В тоже время, в Институте кибернетики им. Глушкова в лаборатории профессора Л.С. Алеева был создан электростимулятор мышц - Меотон: импульс движения здорового человека усиливается прибором и направляется к пораженной мышце неподвижного больного. Мышца получает команду от мышцы и заставляет неподвижную сокращаться: эта программа записывается в память прибора и больной уже в дальнейшем может работать сам. Следует отметить, что эти разработки были сделаны уже несколько десятилетий назад. По всей видимости, именно эти процессы лежат в основе программы, самостоятельно и независимо разработанной и применяемой и поныне В.И. Дикулем . Подробнее об этих разработках можно ознакомиться в документальном фильме «Сотая загадка мышцы» Юрия Сенчукова, Центрнаучфильм, 1988.

Отдельно отметим, что еще в середине 20 века группой советских ученых, под руководством Л.В. Полежаева проводились исследования, с успешным практическим применением их результатов по регенерации костей свода черепа у животных и человека; область дефекта достигала до 20 квадратных сантиметров. Края пробоины засыпались измельченной костной тканью, что вызывало процесс регенерации, в ходе которого происходило восстановление поврежденных участков.

В связи с этим, уместно будет вспомнить и так называемый «Случай Спивака» - формирование гистольной фаланги пальца у шестидесятилетнего мужчины, при обработке обрубка компонентами внеклеточного матрикса (коктейль молекул), представлявшего собой порошок из мочевого пузыря свиньи (упоминание об этом было в еженедельной аналитической передаче «В центре событий» по государственному телеканалу ТВ Центр).

Так же, хотелось бы заострить внимание на таком повседневном и привычном объекте, как соль (NaCl). Широко известны лечебные свойства морского климата, мест, с высоким содержанием соли в воде и в воздухе, наподобие Мертвого моря в Израиле или Соль-Илецка в России, соляных шахт, широко применяемых в стационарах, санаториях и курортах по всему миру. Спортсмены и люди, ведущие активный образ жизни, хорошо знакомы и с соляными ванночками, применяемыми при лечении травм опорно-двигательного аппарата. В чем же секрет этих удивительных свойств обычной соли? Как обнаружили ученые из университета Тафтса (США), для процесса восстановления отрезанного или откушенного хвоста головастикам необходима поваренная соль. Если посыпать ею ранку, хвост отрастает быстрее даже в том случае, если уже успела образоваться рубцовая ткань (шрам). При наличии соли ампутированный хвост отрастает, а отсутствие ионов натрия блокирует этот процесс. Безусловно, следует порекомендовать воздержаться от безудержного потребления соли, в надежде ускорить процесс исцеления. Многочисленные исследования наглядно демонстрируют тот вред, который наносит организму чрезмерное употребление соли в пищу. По всей видимости, для запуска и ускорения процесса регенерации, ионы натрия должны поступать к поврежденным участкам иными путями .

Говоря о современной регенеративной медицине, обычно выделяют два основных направления. Приверженцы первого пути занимаются выращиванием органов и тканей отдельно от пациента или же на самом пациенте, но в другом месте (например, на спине), с дальнейшей их трансплантацией в поврежденный участок. Начальным этапом развития данного направления можно считать решение вопроса с кожей. Традиционно новая кожная ткань бралась у самих пациентов или у трупов, но сегодня кожа может выращиваться в огромных количествах. Сырой материал ненужной кожи берется у новорожденных младенцев. Если у младенца-мальчика делается обрезание, то из этого кусочка можно сделать огромное количество живой ткани. Крайне важно брать кожу для выращивания у новорожденных, клетки должны быть как можно моложе. Здесь может возникнуть закономерный вопрос: почему это так важно? Дело в том, что для удвоения ДНК в ходе деления клетки занятым этим ферментам высших организмов требуются особо устроенные концевые участки хромосом, теломеры. Именно к ним прикрепляется РНК-затравка, с которой на каждой из нитей двойной спирали ДНК начинается синтез второй нити. Однако при этом вторая нить получается короче первой на участок, который был занят как раз РНК-затравкой. Теломера укорачивается, пока не становится такой маленькой, что РНК-затравка уже не может к ней прикрепиться, и циклы клеточного деления останавливаются. Другими словами, чем моложе клетка, тем большее количество делений произойдет прежде, чем сама возможность этих делений исчезнет. В частности, еще в 1961 году американский геронтолог Л. Хейфлик установил, что «в пробирке» клетки кожи - фибропласты, могут делиться не более 50 раз. Из одной же крайней плоти можно вырастить 6 футбольных полей кожной ткани (примерная площадь - 42840 квадратных метров) .

В дальнейшем был разработан специальный пластик, разлагаемый микроорганизмами. Из него был изготовлен имплантант на спине мыши: пластиковый каркас, отлитый в форме человеческого уха, покрытый живыми клетками. Клетки в процессе роста прилипают к волокнам и принимают необходимую форму. Со временем клетки начинают доминировать и формировать новую ткань (например, хрящ ушной раковины). Другой вариант данного метода: имплантант на спине пациента, представляющий собой каркас необходимы формы, засеивается стволовыми клетками определенной ткани. Через некоторое время этот фрагмент удаляется со спины и имплантируется на место.

В случае с внутренними органами, состоящими из нескольких слоев клеток разного типа, приходится использовать несколько иные методы. Первым внутренним органом был выращен и впоследствии успешно имплантирован мочевой пузырь. Это орган, испытывающий огромные механические нагрузки: через мочевой пузырь в течение жизни проходит около 40 тысяч литров мочи. Состоит он из трех слоев: внешний - соединительная ткань, средний - мышечная, внутренний - слизистая оболочка. Полный мочевой пузырь содержит примерно 1 литр мочи и имеет форму надутого воздушного шара. Для его выращивания был изготовлен каркас полного мочевого пузыря, на который слой за слоем высеивали живые клетки. Это был первый орган, целиком выращенный из живых тканей.

Тот же пластик, о котором упоминалось чуть выше, был использован для восстановления поврежденного спинного мозга у лабораторных мышей. Принцип здесь был тот же: волокна пластика сворачивали в жгут и высеивали на него эмбриональные нервные клетки. В результате разрыв закрывался новой тканью, и происходило полное восстановление всех моторных функций. Достаточно полный обзор приводится в документальном фильме ВВС «Сверхчеловек. Самоисцеление».

Справедливости ради отметим, что сам факт возможности полного восстановления моторных функций после тяжелейших травм, вплоть до полного перерыва спинного мозга, помимо одиночек-энтузиастов, наподобие В.И. Дикуля, был доказан и российскими учеными. Ими же был предложен эффективный метод реабилитации таких людей. Несмотря на фантастичность подобного заявления, хотелось бы отметить, что анализируя высказывания корифеев научной мысли, мы можем сделать вывод, что в науке нет и быть не может никаких аксиом, есть лишь теории, которые всегда могут быть изменены или опровергнуты. Если теория противоречит фактам, то ошибочна теория, и ее надо менять. Эта простая истина, к сожалению, очень часто игнорируется, и базовый принцип науки: «Сомневайся во всем» - приобретает сугубо односторонний характер - лишь по отношению к новому. В результате, новейшие методики, которые могут помочь тысячам и сотням тысяч людей, вынуждены годами пробиваться через глухую стену: «Это невозможно, потому что невозможно в принципе». Чтобы проиллюстрировать сказанное выше и показать, как далеко и как давно вперед зашла наука, приведу небольшой отрывок из книги Н.П. Бехтеревой «Магия мозга и лабиринты жизни», одного из тех специалистов, кто стоял у истоков разработки данного метода. «Передо мной на каталке лежал синеглазый парень 18-20 лет (Ч-ко), с копной темно-каштановых, почти черных волос. «Согни ногу, ну подтяни к себе. А теперь - выпрями. Другую, - командовал руководитель группы стимуляции спинного мозга, неформальный лидер. Как трудно, как медленно двигались ноги! Какого огромного напряжения это стоило больному! А всем нам так хотелось помочь! И все-таки ноги двигались, двигались по приказу: врача, самого больного - неважно, важно - по приказу. А на операции спинной мозг в области D9-D11 буквально вычерпывали ложками. После афганской пули, которая прошла через спинной мозг больного, это было месиво. Афганистан сделал молодого красавца озлобленным зверьком. И все-таки после стимуляции проведенной по методу, предложенному тем же неформальным лидером С.В. Медведевым, многое изменилось в висцеральных функциях.

А чего нельзя? Нельзя ставить крест на больном лишь потому, что в учебники еще не вошло все, что могут сегодня специалисты. Те же врачи, которые принимали больного и все видели, удивлялись: «Ну, помилуйте, товарищи ученые, конечно, у вас там наука, но ведь полный перерыв спинного мозга, о чем можно говорить?!» Вот так. Видели и не видели. Есть научный фильм, все заснято.

Чем раньше после поражения мозга начинается стимуляция, тем более вероятен эффект. Однако даже в случаях давних травм многое удается и узнать, и сделать.

Другому больном электроды вводились в верхний и нижний по отношению к перерыву участка спинного мозга. Травма была давняя, и никого из нас не удивило, что электромиелограмма (электрическая активность спинного мозга) с электродов ниже перерыва не писалась, линии были совершенно прямые, как если бы прибор не был включен. И вдруг (!) - нет, не совсем вдруг, но похоже на «вдруг», так как это произошло после нескольких сессий электрических стимуляций, - электромиелограмма с электродов ниже полного, давнего (6 лет) перерыва стала появляться, усиливаться и наконец, достигла характеристик электрической активности выше перерыва! Это совпало с клиническим улучшением состояния тазовых функций, что, естественно, очень порадовало не только врачей, но и больного, в остальном психологически и физически неплохо адаптировавшегося к своему трагическому настоящему и будущему. Трудно было рассчитывать на большее. Мышцы ног атрофировались, больной передвигался на каталке, все, что могли, взяли на себя его руки. Но и здесь, в развивающихся позитивных и негативных событиях, дело не обошлось без изменений спинномозговой жидкости. Взятая у больного из участка ниже перерыва, она отравляла клетки в культуре, была цитотоксической. После стимуляции цитотоксичность исчезла. Что же было со спинным мозгом ниже перерыва до стимуляции? Судя по приведенному оживлению, он (мозг) не умер. Скорее - спал, но спал как бы под наркозом токсинов, спал «мертвым» сном - ни активности бодрствования, ни активности сна в электроэнцефалограмме не было» .

В этом же направлении имеются и более экзотичные пути, наподобие трехмерного биопринтера, созданного в Австралии, который уже печатает кожу, и в ближайшем будущем, по заверениям разработчиков, сможет печатать и целые органы. В основу его работы заложен тот же принцип, что и в описанном случае создания мочевого пузыря: высеивание живых клеток слой за слоем .

Второе направление регенеративной медицины можно условно обозначить одной фразой: «Зачем выращивать новое, если можно починить старое?». Главной задачей приверженцы данного направления считают восстановление поврежденных участков силами самого организма, используя его резервы, скрытые возможности (стоит вспомнить начало данной статьи) и определенные вмешательства извне, в основном в виде поставки дополнительных ресурсов и строительного материала для репарации.

Возможных вариантов здесь также большое количество. Для начала, следует отметить, что по некоторым оценкам, в каждом органе от рождения есть запас резервных стволовых клеток примерно в 30 %, которые расходуются в процессе жизни. В соответствии с этим, по мнению некоторых геронтологов, видовой предел жизни человека составляет 110-120 лет. Следовательно, биологический резерв жизни человека 30-40 лет, а учитывая российские реалии эти цифры можно увеличить до 50-60 лет. Другой вопрос, что современные условия жизни не способствуют этому: крайне плачевное, и с каждым годом все более ухудшающееся состояние экологии; сильные, и что еще более важно постоянные стрессы; огромные психические, интеллектуальные и физические нагрузки; удручающее на местах состояние медицины, в частности российской; направленность фармацевтики не на помощь людям, а на получение сверхприбыли и многое другое, полностью изнашивают человеческий организм к тому моменту, когда по идее должен наступать самый расцвет наших сил и возможностей. Тем не менее, данный резерв может сильно помочь при восстановлении после травм и лечении серьезных заболеваний, особенно в младенческом и детском возрасте .

Эван Снайдер, невропатолог в детской больнице Бостона (США) длительное время занимался изучением процесса восстановления детей и младенцев после различных травм головного мозга. В результате исследований им были отмечены мощнейшие возможности исцеления нервных тканей у своих юных пациентов. Для примера приведем случай с восьмимесячным младенцем, перенесшим обширный инсульт. Уже через три недели после инцидента у него наблюдалась лишь небольшая слабость левых конечностей, а через три месяца - зафиксировано полное отсутствие каких-либо патологий. Специфические клетки, обнаруженные Снайдерем при изучении мозговых тканей, были названы им нервными стволовыми клетками или эмбриональными клетками мозга (ЭКМ). В дальнейшем проводились успешные эксперименты по введению ЭКМ мышам, страдающим тремором. После инъекций происходило распространение клеток по ткани мозга и наступало полное исцеление .

Относительно недавно, в США, в Институте Регенеративной медицины, в штате Северная Каролина, группе исследователей под руководством Джерими Лоранс, удалось заставить биться сердце мыши, умершей за 4 дня до этого. Другие ученые, в разных странах по всему миру, пытаются, и порой весьма успешно, запустить механизмы регенерации с помощью клеток, выделяемых из раковой опухоли. Здесь следует отметить, что теломеры, уже упомянутые выше, у половых и раковых клеток в процессе деления не укорачиваются (если говорить точнее, то дело здесь в особом ферменте - теломеразе, который и достраивает укороченные теломеры), что делает их практически бессмертными. Поэтому столь неожиданный поворот в истории с онкозаболеваниями имеет под собой абсолютно рациональное начало (упоминание об этом было в еженедельной аналитической передаче «В центре событий» по государственному телеканалу ТВ Центр).

Отдельно выделим создание гемобанков по сбору пуповинной крови новорожденных, являющейся одним из наиболее перспективных источников стволовых клеток. Известно, что пуповинная кровь богата гемопоэтическими стволовыми клетками (ГСК). Характерной особенностью полученных из пуповинной крови СК является их значительно большее, чем у взрослых СК сходство с клетками из эмбриональных тканей по таким параметрам, как биологический возраст и способность к размножению. Пуповинная кровь, полученная из плаценты сразу после рождения ребенка, богата СК с большими пролиферативными возможностями, чем у клеток, полученных из костного мозга или периферической крови. Подобно любому продукту крови, СК пуповинной крови нуждаются в инфраструктуре для их сбора, хранения и установления пригодности для трансплантации. Пуповина пережимается через 30 секунд после рождения ребенка, плацента и пуповина отделяются, и пуповинную кровь собирают в специальный пакет. В образце должно быть не менее 40 мл, чтобы его можно было использовать. Кровь типируется по HLA и культивируется. Незрелые клетки человеческой пуповинной крови с высокой способностью к пролиферации, размножению вне организма и выживанию после трансплантации могут храниться замороженными более 45 лет, затем после оттаивания они с большой вероятностью сохраняют эффективность при клинической трансплантации. Банки пуповинной крови существуют по всему миру, только в США их более 30 и еще много частных банков. Национальные институты здоровья США спонсируют программу изучения трансплантации пуповинной крови. В Нью-Йоркском центре крови есть программа плацентарной крови, и своя программа исследований есть у Национального регистра доноров костного мозга .

Главным образом, данное направление активно развивается в США, Западной Европе, Японии и Австралии. В России данный лишь набирает обороты, наиболее известен гемобанк Института Общей Генетики (Москва). Каждый год число трансплантаций возрастает, и около трети пациентов в настоящее время составляют взрослые. Около двух третей трансплантаций проводится больным лейкемией, и около четверти - пациентам с генетическими болезнями. Частные банки пуповинной крови предлагают свои услуги супружеским парам, ожидающим рождения ребенка. Они сохраняют пуповинную кровь для использования ее в будущем самим донором или членами его семьи. Общественные банки пуповинной крови обеспечивают ресурсы для трансплантации от неродственных доноров. Пуповинная кровь и кровь матери типируются по HLA-антигенам, проверяется на отсутствие инфекционных заболеваний, определяется группа крови и эта информация сохраняется в истории болезни матери и семьи.

В настоящее время активные исследования ведутся в области размножения стволовых клеток, содержащихся в единице пуповинной крови, что позволит использовать ее для более крупных пациентов и даст более быстрое приживление стволовых клеток. Размножение СК пуповинной крови происходит при использовании факторов роста и питания. Разработанная компанией ViaCell Inc. технология, называющаяся Selective Amplification, позволяет увеличить популяцию СК пуповиной крови в среднем в 43 раза. Ученые из ViaCell и университета Дюссельдорфа в Германии (University of Duesseldorf) описали новую, действительно плюрипотентную популяцию клеток человеческой пуповинной крови, которую они назвали USSCs - unrestricted somatic stem cells - неограниченно делящиеся соматические СК (Kogler et al 2004). Как in vitro, так in vivo, USSCs демонстрировали гомогенную дифференцировку в остеобласты, хондробласты, адипоциты и нейроны, экспрессирующие нейрофиламенты, белки каналов натрия и различные фенотипы нейротрансмиттеров. Хотя эти клетки еще не применялись в клеточной терапии людей, USSCs из пуповинной крови могут восстанавливать различные органы, в том числе головной мозг, кость, хрящ, печень и сердце .

Другой важной областью исследований является изучение способности СК пуповинной крови к дифференцировке в клетки различных тканей, помимо гемопоэтической, и установление соответствующих линий СК. Исследователи из университета Южной Флориды (University of South Florida (USF, Tampa,FL)) использовали ретиноевую кислоту, чтобы заставить СК пуповинной крови дифференцироваться в нервные клетки, что было продемонстрировано на генетическом уровне анализом строения ДНК. Эти результаты показали возможность использования этих клеток для лечения нейродегенеративных болезней. Пуповинная кровь для этой работы была предоставлена родителями ребенка; она была обработана в оснащенной на современном уровне лаборатории CRYO-CELL и фракционированные замороженные клетки были переданы ученым USF. Пуповинная кровь оказалась источником гораздо более разнообразных клеток-предшественников, чем считалось раньше. Она может быть использована для лечения нейродегенеративных болезней, в том числе в сочетании с генотерапией, травм и генетических болезней. В ближайшем будущем станет возможным при рождении детей с генетическими дефектами собирать их пуповинную кровь, методами генной инженерии исправлять дефект и возвращать эту кровь ребенку.

Помимо собственно пуповинной крови имеется возможность использовать как источник мезенхимальных стволовых клеток и периваскулярные клетки пуповины. Ученые из Института биоматериалов и биомедицинской инженерии Университета Торонто (Institute of Biomaterialis and Biomedical Engineering of the University of Toronto (Toronto, Canada)) обнаружили, что желеобразная соединительная ткань, окружающая кровеносные сосуды пуповины богата мезенхимальными стволовыми клетками - предшественниками и может быть использована для получения их в большом количестве за короткое время. Периваскулярные (окружающие сосуды) клетки часто отбрасываются, поскольку основное внимание обычно бывает сосредоточенно на пуповинной крови, в которой мезенхимальные СК встречаются с частотой всего лишь одна на 200 миллионов. Но этот источник клеток-предшественников, позволяющий их размножать, может в значительной степени усовершенствовать трансплантации костного мозга.

Параллельно ведутся исследования уже найденных и поиск новых путей получения взрослых человеческих СК. В их число входят: молочные зубы, головной мозг, молочные железы, жир, печень, поджелудочная железа, кожа, селезенка или более экзотический источник - СК нейрального креста из взрослых волосяных фолликулов. У каждого их этих источников есть свои преимущества и свои недостатки .

В то время как продолжаются споры об этических и терапевтических возможностях эмбриональных и взрослых СК, была открыта третья группа клеток, играющих ключевую роль в развитии организма и способных к дифференцировке в клетки всех основных типов тканей. VENT (ventrally emigrating neural tube) клетки представляют собой уникальные мультипотентные клетки, которые отделяются от нервной трубки на ранних этапах эмбрионального развития, после того как трубка замыкается и формирует головной мозг (Dickinson et al 2004). VENT-клетки затем двигаются по нервным путям, в конечном итоге оказываясь впереди нервов и рассеиваются по всему организму. Они двигаются вместе с черепно-мозговыми нервами к определенным тканям и рассеиваются в этих тканях, дифференцируясь в клетки основных четырех типов тканей - нервной, мышечной, соединительной и эпителия. Если VENT-клетки играют роль в формировании всех тканей, возможно, прежде всего в формировании связей ЦНС с другими тканями - принимая во внимание то, как эти клетки двигаются впереди нервов, как если бы показывали им дорогу. Нервы могут направляться по определенным знакам, оставшимся после дифференцировки VENT-клеток. Эта работа была выполнена на эмбрионах кур, уток и перепелов, и планируется повторить ее на мышиной модели, дающей возможности подробных генетических исследований. Эти клетки могут быть использованы для выделения человеческих клеточных линий .

Другим, передовым и наиболее перспективным направлением является наномедицина. Несмотря на то, что политики обратили свое пристальное внимание на все, что имеет в составе своих названий частицу «нано», лишь несколько лет назад, данное направление появилось уже довольно давно и уже были достигнуты определенные успехи. Большинство экспертов полагают, что именно эти методы станут основополагающими в 21 веке. Американский Национальный институт здоровья включил наномедицину в пятерку самых приоритетных областей развития медицины в 21 веке, а Национальный институт рака США собирается применять достижения наномедицины при лечении рака. Роберт Фрайтос (США), один из основоположников теории наномедицины, дает такое определение: «Наномедицина - это наука и техника диагностики, лечения и профилактики заболеваний и травматизма, уменьшение боли, а также сохранение и улучшение здоровья человека при помощи молекулярных технических средств и научных знаний о молекулярной структуре человеческого организма». Классик в области нанотехнологических разработок и предсказаний Эрик Дрекслер называет основные постулаты наномедицины:

1) не травмировать ткани механически;

2) не поражать здоровые клетки;

3) не вызывать побочных эффектов;

4) лекарства должны самостоятельно:

Чувствовать;

Планировать;

Действовать.

Наиболее экзотическим вариантом являются так называемые нанороботы. Среди проектов будущих медицинских нанороботов уже существует внутренняя классификация на макрофагоциты, респироциты, клоттоциты, васкулоиды и другие. Все они являются по сути искусственными клетками, в основном иммунитета или крови человека. Соответственно, их функциональное предназначение напрямую зависит от того, какие клетки они замещают. Помимо медицинских нанороботов, существующих пока только в головах ученых и отдельных проектов, в мире уже созданы ряд технологий для наномедицинской отрасли. К ним относятся: адресная доставка лекарств к больным клеткам, диагностика заболеваний с помощью квантовых точек, лаборатории на чипе, новые бактерицидные средства .

Как пример, приведем разработки израильских ученых в области лечения аутоиммунных заболеваний. Объектом их исследований стал белок матриксная металлопептидаза 9 (MMP9), участвующий в формировании и поддержании внеклеточного матрикса - тканевых структур, служащих каркасом, на котором развиваются клетки. Этот матрикс обеспечивает и транспорт различных химических веществ - от питательных до сигнальных молекул. Он стимулирует рост и пролиферацию клеток на месте повреждений. Но формирующие его белки, и прежде всего ММР9, выходя из-под контроля тормозящих их активность белков - эндогенных ингибиторов металлопротеиназ (TIMPS), могут становиться причинами развития некоторых аутоиммунных расстройств.

Исследователи занялись вопросом о том, как же можно «усмирить» эти белки, чтобы пресечь аутоиммунные процессы прямо в источнике. До сих пор, решая эту задачу, ученые концентрировались на поиске химических средств, избирательно блокирующих работу MMPS. Однако такой подход имеет серьезные ограничения и тяжелые побочные эффекты - и биологи из группы Ирит Саги решили подойти к проблеме с иной стороны. Они решили синтезировать такую молекулу, которая, будучи введенной в организм, стимулировала бы иммунную систему к выработке антител, сходных с белками TIMPS. Такой существенно более тонкий подход обеспечивает высочайшую точность: антитела будут атаковать MMPS на много порядков избирательнее и эффективнее, чем любые химические соединения.

И ученым это удалось: они синтезировали искусственный аналог активного сайта белка MMPS9: ион цинка, скоординированный тремя гистидиновыми остатками. Его инъекция лабораторным мышам приводила к выработке антител, действующих ровно в той же манере, в какой работают белки TIMPS: блокируя вход в активный сайт .

В мире наблюдается бум вложений в наноотрасли. Большая часть инвестиций в наноразработки приходится на США, ЕС, Японию и Китай. Количество научных публикаций, патентов и журналов непрерывно растет. Существуют прогнозы создания уже к 2015 году товаров и услуг на $1 трлн., включая и образование до 2 миллионов рабочих мест.

В России Министерство образования и науки создало Межведомственный научно-технический совет по проблеме нанотехнологий и наноматериалов, деятельность которого направлена на сохранение технологического паритета в будущем мире. Для развития нанотехнологий в целом и наномедицины в частности. Готовится принятие федеральной целевой программы по их развитию. Данная программа будет включать подготовку целого ряда специалистов в длительной перспективе.

Достижения наномедицины станут доступны по разным оценкам только через 40-50 лет. Сам Эрик Дрекслер называет цифру в 20-30 лет. Но учитывая масштаб работы в данной области и количество вкладываемых в нее денег, все больше аналитиков сдвигают первоначальные оценки на 10-15 лет в сторону уменьшения .

Самое интересное, что такие лекарства уже есть, они созданы более 30 лет назад в СССР. Толчком к исследованиям в данном направлении было обнаружение эффекта преждевременного старения организма, широко наблюдавшегося у военных, особенно в ракетно-стратегических войсках, у экипажей атомных подводных ракетоносцев, летчиков боевой авиации. Выражается этот эффект, в преждевременном разрушении иммунной, эндокринной, нервной, сердечнососудистой, половой систем, зрения. В его основе лежит процесс подавления синтеза белка. Главный вопрос, стоявший перед советскими учеными: «Как восстановить полноценный синтез?». Изначально был создан препарат «Тимолин», сделанный на основе пептидов, выделенных из тимуса молодых животных. Он был первым в мире препаратом иммунной системы. Здесь мы видим тот же принцип, что был положен в основу процесса добывания инсулина, на начальных этапах разработки методов лечения сахарного диабета. Но на этом исследователи отдела структурной биологии Института Биоорганической химии, возглавляемые Владимиром Хавинсоном, не остановились. В лаборатории ядерного магнитного резонанса были определены пространственные и химические структуры молекулы пептида из тимуса. На основании полученной информации, был разработан метод синтеза коротких пептидов, которые обладают заданными свойствами, аналогичными природным. Результат - создание серии лекарственных препаратов, названных цитогенами (другие возможные названия: биорегуляторы или синтетические пептиды; указано в таблице).

Список цитогенов

Название

Структура

Направленность действия

Иммунная система и процесс регенерации

Кортаген

Центральная нервная система

Кардиоген

Сердечнососудистая система

Пищеварительная система

Эпиталон

Эндокринная система

Простамакс

Мочеполовая система

Панкраген

Поджелудочная железа

Бронхоген

Бронхо-легочная система

При проведении Санкт-Петербургским институтом биорегуляции и геронтологии экспериментов на мышах и крысах (прием цитогенов начинался со второй половины жизни), наблюдалось увеличение жизни на 30-40 %. В дальнейшем проводилось обследование и постоянный мониторинг состояния здоровья у 300 пожилых людей, жителей Киева и Санкт-Петербурга, принимавших цитогены курсами два раза в год. Данные об их самочувствии сверялись с данными статистики по региону. У них наблюдалось снижение смертности в 2 раза и общее улучшение самочувствия и качества жизни. В целом, за 20 лет использования биорегуляторов через терапевтические мероприятия прошли более 15 миллионов человек. Эффективность применения синтетических пептидов была стабильно высокая, и, что еще более важно, не было зафиксировано ни одного случая побочной или аллергической реакции. Лаборатория получила Премии Совета Министров СССР, авторы - внеочередные научные звания, степени докторов наук и картбланш в научной работе. Все сделанные работы были защищены патентами, как в СССР, так и за рубежом. Опубликованные в зарубежных научных журналах результаты, полученные советскими учеными, опровергали всемирно признанные нормы и пределы, что неизбежно вызвало сомнения экспертов. Проверки в национальном Институте старения США подтвердили высокую эффективность цитогенов. В опытах наблюдалось увеличение числа делений клеток при добавлении синтетических пептидов по сравнению с контролем на 42,5 %. Почему эта линейка препаратов до сих пор не выведена на международный рынок продаж, учитывая отсутствие зарубежных аналогов, причем этот приоритет временный, большой вопрос. Возможно, его стоит задать руководству РосНано, которое в настоящий момент курирует все разработки в области нанотехнологий. Подробнее об этих разработках можно узнать в документальном фильме «Прозрение. Наномедицина и видовой предел человека» Владислава Быкова, киностудии «Просвет», Россия, 2009.

Подводя итоги, мы можем убедиться, что регенерация человека является реальностью наших дней. Уже получены множество данных, разрушающих закоренелые стереотипы, утвердившиеся в общественном мнении. Разработаны множество различных методик, обеспечивающих исцеление от заболеваний, ранее считавшихся неизлечимыми, в силу их дегенеративных свойств, и успешное и полноценное восстановление поврежденных или даже полностью утраченных органов и тканей. Постоянно ведется «шлифовка» прежних и поиск все новых и новых путей и способов решения сложнейших задач регенеративной медицины. Всё, что наработано уже сейчас порой поражает наше воображение, сметая все наши привычные представления о мире, о нас самих, о наших возможностях. При этом стоит осознавать, что описанное в данной статье лишь малая часть научных знаний, наработанных к данному моменту. Работа ведется постоянно, и вполне возможно, что какие-либо факты, приведенные здесь, на момент выхода статьи будут уже устаревшими или же вовсе неактуальными и даже ошибочными, как это часто бывало в истории науки: то, что на какой-то момент считалось непреложной истиной, уже через год могло оказаться заблуждением. В любом случае, факты, приведенные в статье, внушают надежду на светлое, счастливое будущее.

Список литературы

  1. Популярная механика [Электронный ресурс]: электронная версия, 2002-2011 - Режим доступа: http://www.popmech.ru/ (20 ноября 2011 - 15 февраля 2012).
  2. Сайт Национальных институтов здоровья США (National Institutes of Health (NIH), USA) [Электронный ресурс]: официальный сайт НИЗ США, 2011 - Режим доступа: http://stemcells.nih.gov/info/health/asp. (20 ноября 2011 - 15 февраля 2012).
  3. База знаний по биологии человека [Электронный ресурс]: Разработка и реализация БЗ: доктор биологических наук, профессор Александров А.А., 2004-2011 - Режим доступа: http://humbio.ru/ (20 ноября 2011 - 15 февраля 2012).
  4. Центр медико-биологических технологий [Электронный ресурс]: офиц. Сайт - М., 2005. - Режим доступа: http://www.cmbt.su/eng/about/ (20 ноября 2011 - 15 февраля 2012).
  5. 60 упражнений Валентина Дикуля + Методы активизации внутренних резервов человека = ваше 100 % здоровье / Иван Кузнецов - М.: АСТ; СПб.: Сова, 2009. - 160 с.
  6. Наука и жизнь: ежемесячный научно-популярный журнал, 2011. - №4. - С. 69.
  7. Коммерческая биотехнология [Электронный ресурс]: интернет-журнал - Режим доступа: http://www.cbio.ru/ (20 ноября 2011 - 15 февраля 2012).
  8. Фонд «Вечная молодость» [Электронный ресурс]: научно-популярный портал, 2009 - Режим доступа: http://www.vechnayamolodost.ru/ (20 ноября 2011- 15 февраля 2012).
  9. Магия мозга и лабиринты жизни / Н.П. Бехтерева. - 2-е изд., доп. - М.: АСТ; СПб.: Сова, 2009. - 383 с.
  10. Нанотехнологии и наноматериалы [Электронный ресурс]: федеральный интернет-портал, 2011 - Режим доступа: http://www.portalnano.ru/read/tezaurus/definitions/nanomedicine (20 ноября 2011 - 15 февраля 2012).

Библиографическая ссылка

Бадертдинов Р.Р. РЕГЕНЕРАЦИЯ ЧЕЛОВЕКА – РЕАЛЬНОСТЬ НАШИХ ДНЕЙ // Успехи современного естествознания. – 2012. – № 7. – С. 8-18;
URL: http://natural-sciences.ru/ru/article/view?id=30279 (дата обращения: 23.08.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Регенера́ция (восстановление) - способность живых организмов со временем восстанавливать повреждённые ткани, а иногда и целые потерянные органы. Регенерацией также называется восстановление целого организма из его искусственно отделённого фрагмента (например, восстановление гидры из небольшого фрагмента тела или диссоциированных клеток). У протистов регенерация может проявляться в восстановлении утраченных органоидов или частей клетки.

Различают две формы регенерации:

1. Внутриклеточная форма - молекулярная, внутришньоорганоидна и органоидное регенерация.

2. Клеточная регенерация - в основе имеет прямое и косвенное деление клеток.

Физиологическая регенерация - явление универсальное, присущее всем живым организмам, а также органам, тканям, клеткам и субклеточных структур. Принято разделять клетки тканей животных организмов и человека на три основные группы: лабильные, стабильные и статические. К лабильных относят клетки, которые быстро и легко возобновляются в процессе нормальной жизнедеятельности организма. Это клетки крови, эпителия слизистой оболочки ЖКТ, эпидермиса.

Судьба клеток, погибших в процессе жизнедеятельности, неодинакова. Клетки наружных покровов после гибели отшелушиваются. Клетки слизистой оболочки кишок, богаты ферменты, после шелушение входят в состав кишечного сока и принимают участие в пищеварении.

К стабильным клеток относят клетки печени, поджелудочной железы, слюнных желез и др.. Они имеют ограниченную способность к размножению, что проявляется при повреждении органа.

К статическим клеток относят клетки поперечно мышечной и нервной тканей. Клетки статических тканей, как считает большинство исследователей, не делятся. Однако процессы физиологической регенерации в нервных клеток осуществляются на субклеточном, ультраструктурном уровнях. По мышечной ткани, последнее время взгляд несколько изменился. Были открыты так называемые клетки-сателлиты, находящиеся под оболочкой, или сарколеммой, мышечного волокна и способны погружаться внутрь волокна делиться и превращаться в ядра и цито-либо саркоплазму, мышечного волокна.

В процессе физиологической регенерации участвуют также камбиальные клетки, то есть наименее дифференцированные или наименее специализированные, которые дают начало клеткам, постепенно дифференцируются или специализируются. Например, камбиальными клетками эпидермиса кожи являются клетки базального слоя.

Процесс физиологической регенерации присущ всем тканям. Наиболее универсальной его формой является внутриклеточная регенерация. Высокая ее интенсивность обеспечивает продолжительность жизни клеток, соответствует времени жизни всего организма. Физиологическая регенерация сохраняет целостность и нормальную жизнедеятельность отдельных тканей, органов и всего организма.

2.Репаративная регенерация. Ее значение. Способы репаративной регенерации.

Репаративная регенерация может быть типичной (Гомоморфоз) и атипичной (гетероморфоз). При гомоморфози восстанавливается такой же орган, как и потерян. При гетероморфози восстановлены органы отличаются от типовых. При этом восстановление утраченных органов может проходить путем епимор- фозу, морфалаксису, ендоморфозу (или регенерационной гипертрофией), компенсаторной гипертрофией.

Епиморфоз (от греч. ??? - после и????? - форма) - Это восстановление органа путем отрастания от раневой поверхности, подлежащей при этом чувственной перестройке. Ткани, прилегающих к поврежденному участки, рассасываются, происходит интенсивный деление клеток, дающих начало зачатке регенерата (бластемы). Затем происходит дифференцировка клеток и формирования органа или ткани. За типом епиморфозу проходит регенерация конечностей, хвоста, жабр в аксолотля, трубчатые кости от надкостницы после вылущивание диафиза у кроликов, крыс, мышцы от мышечной культи у млекопитающих и др.. К епиморфозу относится и рубцевания, при котором происходит закрытие ран, но без восстановления утраченного органа. Епиморфозна регенерация не всегда дает точную копию удаленной структуры. Такую регенерацию называют атипичной. Отличают несколько разновидностей атипичной регенерации.

Гипоморфоз (от греч. ??? - под, внизу и????? - форма) - регенерация с частичным замещением ампутированной структуры (у взрослого шпорцевых лягушки возникает остеподибна структура вместо конечности). Гетероморфоз (от греч. ?????? - другой, другой) - Появление другой структуры на месте утраченной (появление конечности на месте антенн или глаза у членистоногих).

Морфалаксис (от греч. ????? - форма, вид, ?????, ?? - обмен, смена) - это регенерация, при которой происходит реорганизация тканей с участка, оставшаяся после повреждения, почти без клеточного размножение путем перестройки. Из части тела путем перестройки образуется целая животное или орган меньших размеров. Затем размеры особи, что образовалась, или органа увеличиваются. Морфалаксис наблюдается в основном в низкоорганизованных животных, в то время как епиморфоз - в более високоорганизованых. Морфалаксис является основой регенерации гидр. гидроидных полипов, планарий. Часто морфалаксис и епиморфоз происходят одновременно, в сочетании.

Регенерация, что происходит внутри органа, называется ендоморфозом, или регенерационной гипертрофией. При этом восстанавливается не форма, а масса органа. Например, при краевом ранении печени отделенная часть органа никогда не восстанавливается. Поврежденная поверхность восстанавливается, а внутри другой части усиливается размножение клеток и в течение нескольких недель после удаления 2 / 3 печени восстанавливается исходная масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, ее частички имеют типичный размер и функция органа восстанавливается. Близкой к регенерационной гипертрофии является компенсаторная гипертрофия, или викарная (заместительная). Этот средство регенерации связан с увеличением массы органа или ткани, вызванный активным физиологическим нагрузкам. Увеличение органа происходит за счет деления клеток и их гипертрофии.

Гипертрофия клеток заключается в росте, увеличении числа и размеров органелл. В связи с увеличением структурных компонентов клетки повышается ее жизнедеятельность и работоспособность. При компенса- полуторной гипертрофии отсутствует поврежденная поверхность.

Наблюдается этот вид гипертрофии при удалении одного из парных органов. Так, при удалении одной из почек другая испытывает повышенной нагрузки и увеличивается в размере. Компенсаторная гипертрофия миокарда часто возникает у больных гипертонической болезни (при сужении периферических кровеносных сосудов), при пороках клапанов. У мужчин при разрастании предстательной железы затрудняется выделение мочи и гипертрофируется стенка мочевого пузыря.

Регенерация происходит во многих внутренних органах после различных воспалительных процессов инфекционного происхождения, а также после эндогенных нарушений (нейроэндокринные расстройства, опухолевый рост, действие токсических веществ). Репаративная регенерация в различных тканях проходит по-разному. В коже, слизистых оболочках, соединительной ткани после повреждение происходит интенсивное размножение клеток и восстановление ткани, подобной утраченной. Такую регенерацию называют полной, или pecmu- туцийною. В случае неполного восстановления, при котором замещение происходит другой тканью или структурой, говорят о субституции.

Регенерация органов происходит не только после удаление их части хирургическим путем или в наследствии травмирования (механического, термического и др.), но и после переноса патологических состояний. Например, на месте глубоких ожогов могут быть массивные разрастание плотной соединительной рубцовой ткани, но нормальная структура кожи не восстанавливается. После перелома кости в отсутствие смещения отломков нормальное строение не восстанавливается, а разрастается хрящевая ткань и образуется ненастоящий сустав. При повреждении покровов восстанавливается как соединительнотканная часть, так и эпителий. Однако скорость размножены клеток рыхлой соединительной ткани является более высокой, поэтому эти клетки заполняют дефект, образуют венные волокна и после больших повреждений формируется рубцовая ткань. Чтобы не допустить этого, применяют пересадку кожи, взятой у той же или другого человека.

В настоящее время для регенерации внутренних органов применяют искусственные пористые каркасы, по которым растут ткани, регенерируют. Ткани прорастают через поры и целостность органа восстанавливается. Регенерацией за каркасом можно восстановить кровеносные сосуды, мочеточник, мочевой пузырь, пищевод, трахею и другие органы.

Стимуляция регенерационных процессов. При обычных условий эксперимента у млекопитающих ряд органов не регенерируется (головной и спинной мозг) или восстановительные процессы в них выражены слабо (кости свода черепа, сосуды, конечности). Однако существуют методы воздействия, которые позволяют в эксперименте (а иногда и в клинике) стимулировать регенерационные процессы и применительно отдельных органов добиться полноценного восстановление. К таким воздействиям относится замещения удаленных участков органов гомо-и гетеротранс- плантатом, который способствует заместительной регенерации. Сущность заместительной регенерации заключается в замещении или прорастании трансплантатов регенерационными тканями хозяина. Кроме того, трансплантат является каркасом, благодаря которому направлена??регенерация стенки органа.

Для инициирования стимуляции регенерационных процессов исследователи используют также ряд веществ разнообразной природы - экстракты из животных и растительных тканей, витамины, гормоны щитовидной железы, гипофиза, надпочечников и лекарственные препараты.

Что еще почитать