Что дает химическая промышленность электроэнергетике. Понятие электроэнергетики

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра общей и региональной экономики

КУРСОВАЯ РАБОТА

по дисциплине «Экономическая география России»

География электроэнергетической промышленности России.

Научный руководитель: доцент Землянская Т.В.

Курсовую работу выполнила студентка первого курса группы Э-108

Кустова Екатерина Николаевна

Кемерово

Введение………………………………………………………………3

1. Роль и место электроэнергетики в топливно-энергетическом комплексе и экономике……………………………………………………………….4

2. Уровень развития электроэнергетики в России в сравнении с другими странами (объем производства на ушу населения)……………………6

3. Структура производства электроэнергии, динамика ее развития

в сравнении с другими странами. ……………………………………...8

4. Структура потребления элекроэнергии по отраслям народного хозяйства в сравнении с другими странами. Программа энергосбережения………………………………………………………10

5. Типы электростанций: их достоинства и недостатки, факторы размещения……………………………………………………………..12

5.1. Тепловая электростанция

5.2. Гидравлическая электростанция

5.3. Атомная электростанция

5.4. Альтернативные источники энергии

6. Исторические особенности формирования электроэнергетики……17

6.1. План ГОЭЛРО и география электростанции

6.2. Развитие электроэнергетики в 50-70-е годы

7. Перспективы развития отрасли. «Второй план ГОЭЛРО».

8. Регионообразующее значений крупнейших электростанций.

9. Характеристика Единой системы России, реформа РАО ЕЭС.

10. Крупнейшие корпорации отрасли

Заключение

Список литературы

Введение

Электроэнергетическая промышленность - ведущая и составная часть энергетики. Она обеспечивает производство, трансформацию и потребление электроэнергии, кроме того, электроэнергетика играет региоонообразующую роль, является стержнем материально-технической базы общества, а также способствует оптимизации территориальной организации производительных сил. Электроэнергетика наряду с другими отраслями народного хозяйства рассматривается как часть единой народно - хозяйственной экономической системы. В настоящее время без электрической энергии наша жизнь немыслима. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Без электроэнергии невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Представить без электроэнергии нашу жизнь невозможно.

Основным объектом исследования является энергетическая отрасль, ее специфика и значение.

Основными задачами исследования является:

Определения значимость данной отрасли в хозяйственном комплексе страны;

Изучение энергетических ресурсов и факторы размещения электроэнергетической промышленности в России;

Рассмотрение различных типов электростанции, их положительные и отрицательные факторы;

Изучение альтернативных источников энергии, какую роль они играют в современной энергетике;

Изучение целей реструктуризации и перспективы российской электроэнергетической промышленности.

Основной целью данной курсовой работы является изучение принципов функционирования рассматриваемой отрасли в современных условиях, выявления основных проблем, связанных с экономическими, географическими, экологическими факторами и пути их преодоления.

1.Роль и место электроэнергетики в топливно-энергетическом комплексе и экономики России.

Совокупность предприятий, установок и сооружений, обеспечивающих добычу и переработку первичных топливно-энергетических ресурсов, их преобразование и доставку потребителям в удобной для использования форме, образует топливно-энергетический комплекс (ТЭК). ТЭК России является мощной экономико-производственной системой. Он определяющим образом влияет на состояние и перспективы развития национальной экономики, обеспечивая 1/5 производства валового внутреннего продукта, 1/3 объема промышленного производства и доходов консолидированного бюджета России, примерно половину доходов федерального бюджета, экспорта и валютных поступлений.

Электроэнергетика играет особую роль не только в ТЭК, но и в экономике любой страны, и особенно России.

Электроэнергетика – основная системообразующая отрасль любой экономики. От ее состояния и развития зависят уровень и темпы социально-экономического развития страны. В процессе своего функционирования и развития электроэнергетика сотрудничает со многими отраслями хозяйства и конкурирует с некоторыми из них. Огромная роль принадлежит электроэнергетике в обеспечении нормальной деятельности всех отраслей хозяйства, в улучшении функционирования социальных структур и условий жизни населения. Стабильное развитие экономики невозможно без постоянно развивающейся энергетики. Электроэнергетика является основой функционирования экономики и жизнеобеспечения. Надежное и эффективное функционирование электроэнергетики, бесперебойное снабжение потребителей – это основа поступательного развития экономики страны и неотъемлемый фактор обеспечения цивилизованных условий жизни всех ее граждан.

Электроэнергетика имеет очень важное преимущество перед энергией других видов - она легка для передачи на большие расстояния, распределения между потребителями, преобразования в другие виды энергии (механическую, химическую, тепловую, свет).

Специфической особенностью электроэнергетики является то, что ее продукция не может накапливаться для последующего использования, поэтому потребление соответствует производству электроэнергии и во времени, и по количеству (с учетом потерь).

Последние 50 лет электроэнергетика является одной из наиболее динамично развивающихся отраслей народного хозяйства России. Основное потребление электроэнергии в настоящее время приходится на долю промышленности, в частности тяжелой индустрии (машиностроения, металлургии, химической и лесной промышленности). В промышленности электроэнергия применяется в действие различных механизмов и самих технологических процессах: без нее невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Велико значение электроэнергии в сельском хозяйстве, транспортном комплексе и в быту.

Электроэнергетика отличается большим районообразующим значением. Обеспечивая научно-технический прогресс, она сильно воздействует на развитие и территориальную организацию производительных сил.

Передача энергии на большие расстояния способствует эффективному освоению топливно-энергетических ресурсов независимо от их удаленности и места потребления.

Электроэнергетика способствует увеличению плотности размещения промышленных предприятий. В местах больших запасов энергетических ресурсов концентрируются энергоемкие (производство алюминия, магния, титана) и теплоемкие (производство химических волокон) производства, в которых доля топливно-энергетических затрат в себестоимости готовой продукции значительно выше, чем в традиционных отраслях.

2.Уровень развития отрасли в сравнении с другими странами (по объемам производства и на душу населения)

К числу крупнейших в мире производителей электроэнергии в 2009 г. относились США, Китай, Япония, Россия, Канада, Германия и Франция. Разрыв в производстве электроэнергии между развитыми и развивающимися странами велик: на долю развитых стран приходится около 65% всей выработки электроэнергии, развивающихся - 22%, стран с переходной экономикой - 13%.

В целом, в мире более 60% всей электроэнергии вырабатывается на тепловых электростанциях, около 20% - на гидроэлектростанциях, около 17% - на атомных электростанциях и около 1% - на геотермальных, приливных, солнечных, ветровых электростанциях. Однако в этом отношении наблюдаются большие различия по странам мира. Например, в Норвегии, Бразилии, Канаде и Новой Зеландии практически вся электроэнергия вырабатывается на ГЭС. В Польше, Нидерландах и ЮАР, наоборот, почти всю выработку электроэнергии обеспечивают ТЭС, а во Франции, Швеции, Бельгии, Швейцарии, Финляндии, Республике Корее электроэнергетика в основном базируется на АЭС.

В России находится много ГЭС, АЭС, ТЭЦ, ГРЭС, которые производят электроэнергию.

Таблица№1: Производство электроэнергии электростанциями в РФ

По сравнению с 1990 г. к 2000 г. произошло снижение производства энергии. В немалой степени это объясняется старением энергетического оборудования. Резкое снижение мощности вызывает критическое положение в снабжении электроэнергией ряда регионов России (Дальний Восток, Северный Кавказ и др.).

Если производство электроэнергии в 1990 г. взять за 100%, то в 2000 г. выработано всего 78%, т.е. на 22% меньше. А в 2000 в 2008 годах наблюдается рост производства электроэнергии. Сейчас Россия занимает четвертое место в мире по выработке электроэнергии, пропуская впереди США, Китай, Японию. На Россию приходится десятая часть производимой в мире электроэнергии, но по среднедушевому производству электроэнергии Россия находится в третьем десятке государств.

Таблица№2:Произведено электроэнергии в 2009 году

Лидерство России на мировом рынке энергоресурсов, с одной стороны, дает множество политических и экономических преимуществ, а с другой - накладывает целый ряд обязательств и серьезную ответственность. Причем не только на внешнем рынке, но и, внутри страны. Возрастающее потребление электроэнергии во всем мире и в активно развивающейся экономике России - устойчивая тенденция, требующая постоянного увеличения объемов как экспортных поставок энергоносителей, так, безусловно, и стабильного обеспечения растущих потребностей внутреннего рынка. Это придает первоочередную важность таким вопросам, как привлечение в отрасль инвестиций, техническое переоснащение и совершенствование объектов энергетики. Между тем отставание в развитии электроэнергетики от экономики в целом становится все более очевидным.

3. Структура производства электроэнергии, ее динамика в сравнении с зарубежными странами за последние 10 лет.

В состав энергетического хозяйства входят насколько элементов:

· Топливно-энергетический комплекс (ТЭК)- часть энергетического хозяйства от добычи (производства) энергетических ресурсов, их обогащения, преобразования и распределения до получения энергоносителей потребителями. Объединение разнородных частей в единых хозяйственный комплекс объясняется их технологическим единством, организационными взаимосвязями и экономической взаимозависимостью;

· Электроэнергетика – часть ТЭК, обеспечивающая производство и распределение электроэнергии;

· Централизованное теплоснабжение – часть ТЭК, которая производит и распределяет пар и горячую воду от источников общего пользования;

· Теплофикация – часть электроэнергетики и централизованного теплоснабжения, обеспечивающая комбинирование (совместное) производство электроэнергии, пар и орячей воды на теплоэлектростанциях (ТЭЦ) и магистральный транспорт тепла.

Электроэнергетическое производство (генерация, передача, распределение, сбыт электрической и бытовой энергии), как и всякое другое производство состоит из тех этапов: подготовка производства, собственно производство, поставка продукции.

Подготовка производства осуществляется в технико-экономическом и технологическом аспектах. К первой группе относится подготовка персонала, ресурсов (финансовых и материальных) и оборудования электростанций и сетей (электрических и тепловых). Среди этой деятельности, типичной для большинства промышленных отраслей, специфическими для электроэнергетики являются:

Подготовка энергетических ресурсов (создание запасов энергетического топлива на складах ТЭС, накопление воды в водохранилищах ГЭС, перезарядка реакторов АЭС) и проведение ремонтов основного оборудования электростанций и сетей, а также проверка, реконструкция и совершенствование средств оперативно-технологического (диспетчерского) и автоматического управления. Такая работа связанная с режимами электростанций и энергообъединений, проводится по согласованию с соответствующими диспетчерскими службами. Ко второй группе относится технологическая подготовка производства, тесно связанная с коммерческой деятельностью. При этом планируются режимы работы электростанций, обеспечивающие надежное энергосбережение потребителей и эффективное функционирование соответствующего хозяйствующего субъекта.

4. Структура потребления электроэнергии по отраслям народного хозяйства в сравнению с другими странами. Программа энергосбережения.

В ходе реформы меняется структура отрасли: происходит осуществление разделения естественно-монопольных функций (передача электроэнергии по магистральным ЛЭП, распределение электроэнергии по низковольтным ЛЭП и оперативно-диспечерское управление) и потенциально конкурентных (производство и сбыт электроэнергии, ремонт и сервис), и вместо прежних вертикально-интергрированных компаний («АО-Энерго»), выполнявших все эти функции, создаются стуктуры, специализирующиеся на отдельных видах деятельности.

Генерирующие, сбытовые и ремонтные компании становятся частными и конкурируют друг с другом. В эстественномонопольных сферах происходит

5. Типы электростанций, их достоинства и недостатки, факторы размещения.

За последние десятилетия структура производства электроэнергии в России постепенно изменяется. На современном этапе развития топливно-энергетического комплекса основную долю в производстве электроэнергии занимают тепловые электростанции - 66,34%, потом идут гидроэлектростанции - 17,16% и наименьшую долю в производстве электроэнергии занимают атомные электростанции - 16,5%.

Таблица№3: Динамика производства, по видам электростанций.

5.1 Тепловая электростанция – это электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива.

Тепловые электростанции преобладают в России. Тепловые электростанции работают на органическом топливе (уголь, газ, мазут, сланец и торф). На их долю приходится около 67 % производства электроэнергии. Главную роль играют мощные (более 2 млн кВт) ГРЭС (государственные районные электростанции), которые обеспечивают потребности экономического района и работают в энергосистемах.

Тепловые электростанции отличаются надежностью, проработаностью процесса. Наиболее актуальны электростанции, использующие высококалорийное топливо, потому что его экономически выгодно транспортировать.

Основными факторами размещения являются топливный и потребительский. Мощные электростанции, как правило, располагаются у источников добычи топлива: чем крупнее электростанция, тем дальше она может передавать электроэнергию. Те электростанции, которые работают на мазуте, в основном, располагаются в центрах нефтеперерабатывающей промышленности.

Таблица№4: Размещение ГРЭС мощностью более 2 млн кВт

Федеральный округ

ГРЭС

Установленная мощность, млн кВт

Топливо

Центральный

Костромская

Рязанская

Конаковская

Мазут, газ

Уральский

Сургутская 1

Сургутская 2

Рефтинская

Троицкая

Ириклинская

Приволжский

Заинская

Сибирский

Назаровская

Ставропольская

Мазут, газ

Северо-Западный

Киришская

Преимущества тепловых электростанций в том, что они относительно свободно располагаются, в связи с широким распространением топливных ресурсов в России; к тому же они способны вырабатывать электроэнергию без сезонных колебаний (в отличие от ГЭС). К недостаткам тепловых электростанций можно отнести: использование невозобновимых топливных ресурсов, низкий КПД и крайне неблагоприятное воздействие на окружающую среду (КПД обычной ТЭС - 37-39%). Несколько большой КПД имеют ТЭЦ - теплоэлектроцентрали, обеспечивающие теплом предприятия и жилье с одновременным производством электроэнергии. Топливный баланс тепловых электростанций России характеризуется преобладанием газа и мазута.

Тепловые электростанции всего мира выбрасывают в атмосферу ежегодно 200-250 млн т золы и около 60 млн т сернистого ангидрид, к тому же они поглощают огромное количество кислорода.

5.2 Гидравлическая электростанция (ГЭС) – это электростанция, преобразующая механическую энергию потока воды в электрическую энергию, посредством гидравлических турбин, приводящих во вращение электрические генераторы.

ГЭС являются эффективным источником энергии, потому что используют возобновимые ресурсы, к тому же они просты в управлении (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС) и имеют высокий КПД - более 80%. В итоге производимая на ГЭС энергия является самой дешевой. Самым большим достоинством ГЭС является высокая маневренность, т.е. возможность практически мгновенного автоматического запуска и отключения требуемого количества агрегатов. Это позволяет использовать мощные гидроэлектростанции либо в качестве максимально маневренных «пиковых» электростанций, которые обеспечивают устойчивую работу крупных энергосистем, либо «покрывать» плановые пики суточного графика нагрузки энергосистемы, когда имеющихся в наличии мощностей ТЭС не хватает.

Более мощные ГЭС построены в Сибири, т.к. там освоение гидроресурсов наиболее эффективно: удельные капиталовложения в 2-3 раза ниже и себестоимость электроэнергии в 4-5 раз меньше, чем в Европейской части страны.

Таблица№5: ГЭС мощностью более 2 млн кВт

Гидростроительство в нашей стране характеризуется сооружением на реках каскадов гидроэлектростанций. Каскад – это группа ГЭС, расположенная ступенями по течению водного потока для последовательного использования его энергии. Помимо получения электроэнергии каскады решают проблемы снабжения населения и производства водой, устранения упадков, улучшения транспортных условий. Наиболее крупные ГЭС в стране входят в состав Ангаро-Енисейского каскада: Саяно-Шушенская, Красноярская - на Енисее; Иркутская, Братская, Усть-Илимская - на Ангаре; строится Богучанская ГЭС (4 млн кВт).

В Европейской части страны создан крупный каскад ГЭС на Волге. В его состав входят Иваньковская, Угличская, Рыбинская, Городецкая, Чебоксарская, Волжская (вблизи Самары), Саратовская, Волжская (вблизи Волгограда). Весьма перспективным является строительство гидроаккумулирующих электростанций (ГАЭС). Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами - верхним и нижним. ГАЭС позволяют решать проблемы пиковых нагрузок, маневренности использования мощностей энергосетей. В России, остро стоит проблема создания маневренности электростанций, в том числе ГАЭС. Построены Загорская ГАЭС (1,2 млн кВт), строится Центральная ГАЭС (3,6 млн кВт).

5.3 Атомная электростанция (АЭС)- это ядерная установка для производства энергии в заданных режимах и условиях применения, располагающиеся в пределах определенной проектом территории, на которой для осуществления этой цели используются ядерный реактор и комплекс необходимых систем, устройств, оборудования и сооружений с необходимым персоналом.

После катастрофы на Чернобыльской АЭС сократилась программа атомного строительства, с 1986 г. в эксплуатацию ввели только четыре энергоблока. Сейчас ситуация меняется: правительством РФ было принято специальное постановление, которое утвердило программу строительства новых АЭС до 2010 г. Первоначальный ее этап - модернизация действующих энергоблоков и ввод в эксплуатацию новых, которые должны заменить выбывающие после 2000 г. блоки Билибинской, Нововоронежской и Кольской АЭС.

На данный момент в России действует девять АЭС. Еще четырнадцать АЭС и АСТ (атомных станций теплоснабжения) находятся в стадии проектирования, строительства или временно законсервированы.

Таблица№6: Мощность действующих АЭС

Были пересмотрены принципы размещения АЭС с учетом потребности района в электроэнергии, природных условий (в частности, достаточного количества воды), плотности населения, возможности обеспечения защиты людей от недопустимого радиационного воздействия при тех или иных ситуациях. Принимается во внимание вероятность возникновения на предполагаемой территории землетрясений, наводнений, наличие близких грунтовых вод. АЭС должны размещаться не ближе 25 км от городов с численностью более 100 тыс. жителей, АСТ - не ближе 5 км. Ограничивается суммарная мощность электростанций: АЭС- 8 млн кВт, АСТ - 2 млн кВт.

Преимущества АЭС состоят в том, что их можно строить в любом районе независимо от его энергетических ресурсов; атомное топливо отличается большим содержанием энергии (в 1 кг основного ядерного топлива - урана - содержится энергии столько же, сколько в 2500 т угля). К тому же АЭС не дают выбросов в атмосферу в условиях безаварийной работы (в отличие от ТЭС) и не поглощают кислород.

К негативным последствиям работы АЭС относятся:

Трудности в захоронении радиоактивных отходов. Для их вывоза со станции сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле на больших глубинах в геологически стабильных пластах;

Катастрофические последствия аварий на наших АЭС вследствие несовершенной системы защиты;

Тепловое загрязнение используемых АЭС водоемов.

Функционирование АЭС как объектов повышенной опасности требует участи государственных органов власти и управления в формировании направлений развития, выделений необходимых средств.

5.4 Альтернативные источники энергии

В последние время в России возрос интерес к использованию альтернативных источников энергии - солнца, ветра, внутреннего тепла Земли, морских проливов. Уже построены электростанции на нетрадиционных источниках энергии. Например, на энергии приливов работают Кислогубская и Мезенская электростанции на Кольском полуострове.

Термальные горячие воды используются для горячего водоснабжения гражданских объектов и в теплично-парниковых хозяйствах. На Камчатке на р. Паужетка построена геотермальная электростанция (мощность 5 мВт).

Крупными объектами геотермального теплоснабжения являются теплично-парниковые комбинаты - Паратунский на Камчатке и Тернапрский в Дагестане. Ветровые установки в жилых поселках Крайнего Севера используются для защиты от коррозии магистральных газо и нефтепроводов, на морских промыслах.

Разработана программа, по которой планируется построить ветровые электростанции - Колмыцкую, Тувинскую, Магаданскую, Приморскую и геотермальные электростанции - Верхнее-Мугимовскую, Океанскую. На юге России, в Кисловодске, предполагается сооружение первой в стране опытно-экспериментальной электростанции, работающей на солнечной энергии. Ведутся работы по вовлечению в хозяйственный оборот такого источника энергии, как биомасса. По данным экспертов, ввод в эксплуатацию таких электростанций позволит к 2010 довести долю нетрадиционной и малой энергетики в энергобалансе России до 2%.

6. Историко-географические особенности развития электроэнергетики в России.

6.1. План ГОЭЛРО и география электростанций.

Развитие электроэнергетики России связано с планом ГОЭЛРО (1920 г.), рассчитанным на 10-15 лет, предусматривающий строительство 30 районных электрических станций (20 ТЭС и 10 ГЭС) общей мощностью1,75 млн. кВт. В числе прочих намечалось построить Штеровскую, Каширскую, Горьковскую, Шатурскую и Челябинскую районные тепловые электростанции, а также ГЭС - Нижегородскую, Волховскую (1926), Днепровскую, две станции на реке Свирь и т.д. В рамках этого проекта было проведено экономическое районирование, был выделен транспортно-энергетический каркас территории страны. Проект охвативосел восемь основных экономических районов (Северный, Центрально-промышленный, Южный, Приволжский, Уральский, Западно-Сибирский, Кавказский и Туркестанский). В тоже время велось развитие транспортной системы страны (магистрализация старых и строительство новых железнодорожных линий, сооружение Волго-Донского канала).

Кроме строительств электростанций, план ГОЭЛРО предусматривал сооружение сети высоковольтных линий электропередач. Уже в 1922 году была введена первая в стране линия электропередачи напряжением 110 кВ - Каширская ГРЭС, Москва, а в 1933 году принята в эксплуатацию еще более мощная линия - 220 кВ - Нижнесвирская ГЭС, Ленинград. В тот же период началось объединение по сетям электростанций Горького и Иваново, создание энергетической системы Урала.
Реализация Плана ГОЭЛРО потребовала огромных усилий, напряжения всех сил и ресурсов страны. Уже к 1926 г. была выполнена программа "А" плана электростроительства, и к 1930 г. были достигнуты основные показатели Плана ГОЭЛРО по программе "Б"". План ГОЭЛРО положил основу индустриализации в России. К концу 1935 г., т.е. 15-летию плана ГОЭЛРО, вместо 30 запроектированных, было построено 40 районных электростанций общей мощностью 4,5 млн. кВт. Россия располагала мощной разветвленной сетью высоковольтных линий электропередач. В стране функционировали 6 электросистем с годовой производительностью свыше 1 млрд. кВт-ч.

Общие показатели индустриализации страны также существенно превысили проектные задания и СССР вышел по уровню промышленного производства на 1-е место в Европе, и на 2-е место в мире.

Таблица№7: Выполнение плана ГОЭЛРО.

Показатель

План ГОЭЛРО

Год выполнения плана ГОЭЛРО

Валовая продукция промышленности (1913-I)

Мощность районных электростанций (млн.квт)

Производство электроэнергии (млрд. квт. ч.)

Уголь (млн. т.)

Нефть (млн. т.)

Торф (млн. т.)

Железная руда (млн. т.)

Чугун (млн. т.)

Сталь (млн. т.)

Бумага (тыс. т.)

6.2. Развитие электроэнергетики в 50-70 годах.

8. Регионообразующее значение крупнейших электростанций (конкретные примеры).

9. Характеристика Единой энергосистемы России, реформа РАО ЕЭС.

Энергосистема - это группы электростанций разных типов, которые объединенны высоковольтными линиями электропередачи (ЛЭП) и управляемые из одного центра. Энергосистемы в электроэнергетике России объединяют производство, передачу и распределение электроэнергии между потребителями. В энергосистеме для каждой электростанции есть возможность выбрать наиболее экономичный режим работы.

Для более экономного использования потенциала электростанций России создана Единая энергетическая система (ЕЭС), в которой входят более 700 крупных электростанций, на которых сосредоточено 84% мощности всех электростанций страны. Объединенные энергетические системы (ОЭС) Северо-Запада, Центра, Поволжья, Юга, Северного Кавказа, Урала входят в ЕЭС европейской части. Они объединены такими высоковольтными магистралями, как Самара - Москва (500 кВ), Самара - Челябинск, Волгоград - Москва (500 кВ), Волгоград - Донбасс (800 кВ), Москва - Санкт-Петербург (750 кВ).

Главная цель создания и развития Единой энергетической системы России состоит в обеспечении надежного и экономичного электроснабжения потребителей на территории России с максимально возможной реализацией преимуществ параллельной работы энергосистем.

Единая энергетическая система России входит в состав крупного энергетического объединения - Единой энергосистемы (ЕЭС) бывшего СССР, включающего также энергосистемы независимых государств: Азербайджана, Армении, Беларуси, Грузии, Казахстана, Латвии, Литвы, Молдовы, Украины и Эстонии. С ЕЭС продолжают синхронно работать энергосистемы семи стран восточной Европы - Болгарии, Венгрии, Восточной части Германии, Польши, Румынии, Чехии и Словакии.

Электростанции, входящие в ЕЭС, вырабатывают более 90% электроэнергии, которая производится в независимых государствах - бывших республиках СССР. Объединение энергосистем в ЕЭС обеспечивает снижение необходимой суммарной установленной мощности электростанций, за счет совмещения максимумов нагрузки энергосистем, которые имеют разницу поясного времени и отличия в графиках нагрузки; к тому же сокращает требуемую резервную мощность на электростанциях; осуществляет наиболее рациональное использование располагаемых первичных энергоресурсов с учетом изменяющейся топливной конъюнктуры; удешевляет энергетическое строительство и улучшает экологическую ситуацию.

Система российской электроэнергетики характеризуется довольно сильной региональной раздробленностью вследствие современного состояния линий высоковольтных передач. В настоящее время энергосистема Дальнего района не соединена с остальной частью России и функционирует независимо. Соединение энергосистем Сибири и Европейской части России также очень ограничено. Энергосистемы пяти европейских регионов России (Северо-Западного, Центрального, Поволжского, Уральского и Северо-Кавказского) соединены между собой, но пропускная мощность здесь в среднем намного меньше, чем внутри самих регионов. Энергосистемы этих пяти регионов, а также Сибири и Дальнего Востока рассматриваются в России как отдельные региональные объединенные энергосистемы. Они связывают 68 из 77 существующих региональных энергосистем внутри страны. Остальные девять энергосистем полностью изолированы.

Преимущества системы ЕЭС, унаследовавшей инфраструктуру от ЕЭС СССР, заключаются в выравнивании суточных графиков потребления электроэнергии, в том числе за счет ее последовательных перетоков между часовыми поясами, улучшении экономических показателей электростанций, создании условий для полной электрификации территорий и всего народного хозяйства.

11. Крупнейшие корпорации в отрасли.

Заключение

Список литературы

Электроэнергетика - базовая отрасль, развитие которой является непременным условием развития экономики и других сфер жизни общества. В мире производится около 13000 млрд. кВт/ч, из которых только на США приходится до 25%. Свыше 60% электроэнергии в мире производится на тепловых электростанциях (в США, России и Китае - 70-80%), примерно 20% - на ГЭС, 17% - на атомных станциях (во Франции и Бельгии - 60%, Швеции и Швейцарии - 40-45%).

Наиболее обеспеченными электроэнергией в расчете на душу населения являются Норвегия (28 тыс. кВт/ч в год), Канада (19 тыс.), Швеция (17 тыс.).

Электроэнергетика вместе с топливными отраслями, включающими разведку, добычу, переработку и транспортировку источников энергии, а также и самой электрической энергии, образует важнейший для экономики любой страны топливно-энергетический комплекс (ТЭК). Около 40% всех первичных энергоресурсов мира расходуется на выработку электроэнергии. В ряде стран основная часть топливно-энергетического комплекса принадлежит государству (Франция, Италия и др.), но во многих странах основную роль в ТЭК играет смешанный капитал.

Электроэнергетика занимается производством электроэнергии, ее транспортировкой и распределением. Особенность электроэнергетики состоит в том, что ее продукция не может накапливаться для последующего использования: производство электроэнергии в каждый момент времени должно соответствовать размерам потребления с учетом нужд самих электростанций и потерь в сетях. Поэтому связи в электроэнергетике обладают постоянством, непрерывностью и осуществляются мгновенно.

Электроэнергетика оказывает большое воздействие на территориальную организацию хозяйства: позволяет осваивать ТЭР удаленных восточных и северных районов; развитие магистральных высоковольтных линий способствует более свободному размещению промышленных предприятий; крупные ГЭС притягивают к себе энергоемкие производства; в восточных районах электроэнергетика является отраслью специализации и служит основой формирования территориально-производственных комплексов.

Считается, что для нормального развития экономики рост производства электроэнергии должен обгонять рост производства во всех других отраслях. Большую часть выработанной электроэнергии потребляет промышленность. По производству электроэнергии (1015,3 млрд. кВт.-ч в 2007 г.) Россия занимает четвертое место после США, Японии и Китая.

По масштабам производства электроэнергии выделяются Центральный экономический район (17,8% общероссийского производства), Восточная Сибирь (14,7%), Урал (15,3%) и Западная Сибирь (14,3%). Среди субъектов РФ по выработке электроэнергии лидируют Москва и Московская область, Ханты-Мансийский автономный округ, Иркутская область, Красноярский край, Свердловская область. Причем электроэнергетика Центра и Урала базируется на привозном топливе, а сибирские регионы работают на местных энергоресурсах и передают электроэнергию в другие районы.

Электроэнергетика современной России главным образом представлена тепловыми электростанциями (рис. 2), работающими на природном газе, угле и мазуте, в последние годы в топливном балансе электростанций возрастает доля природного газа. Около 1/5 отечественной электроэнергии вырабатывают гидроэлектростанции и 15% - АЭС.

Тепловые электростанции, работающие на низкокачественном угле, как правило, тяготеют к местам его добычи. Для электростанций на мазуте оптимально их размещение рядом с нефтеперерабатывающими заводами. Электростанции на газе ввиду сравнительно низкой величины затрат на его транспортировку преимущественно тяготеют к потребителю. Причем в первую очередь переводят на газ электростанции крупных и крупнейших городов, так как он является более чистым в экологическом отношении топливом, чем уголь и мазут. ТЭЦ (производящие и тепло, и электроэнергию) тяготеют к потребителю независимо от топлива, на котором они работают (теплоноситель при передаче на расстояние быстро остывает).

Самыми крупными тепловыми электростанциями мощностью более 3,5 млн. кВт каждая являются Сургутская (в Ханты-Мансийском автономном округе), Рефтинская (в Свердловской области) и Костромская ГРЭС. Мощность более 2 млн. кВт имеют Киришская (около Санкт-Петербурга), Рязанская (Центральный район), Новочеркасская и Ставропольская (Северный Кавказ), Заинская (Поволжье), Рефтинская и Троицкая (Урал), Нижневартовская и Березовская в Сибири.

Геотермические электростанции, использующие глубинное тепло Земли, привязаны к источнику энергии. В России на Камчатке действуют Паужетская и Мутновская ГТЭС.

Гидроэлектростанции - весьма эффективные источники электроэнергии. Они используют возобновимые ресурсы, обладают простотой управления и очень высоким коэффициентом полезного действия (более 80%). Поэтому стоимость производимой ими электроэнергии в 5-6 раз ниже, чем на ТЭС.

Гидроэлектростанции (ГЭС) экономичнее всего строить на горных реках с большим перепадом высот, тогда как на равнинных реках для поддержания постоянного напора воды и снижения зависимости от сезонных колебаний объемов воды требуется создание больших водохранилищ. Для более полного использования гидроэнергетического потенциала сооружаются каскады ГЭС. В России созданы гидроэнергетические каскады на Волге и Каме, Ангаре и Енисее. Общая мощность Волжско-Камского каскада - 11,5 млн. кВт. И он включает 11 электростанций. Самыми мощными являются Волжская (2,5 млн. кВт) и Волгоградская (2,3 млн. кВт). Действуют также Саратовская, Чебоксарская, Воткинская, Иваньковская, Угличская и др.

Еще более мощный (22 млн. кВт) - Ангаро-Енисейский каскад, включающий самые крупные в стране ГЭС: Саянскую (6,4 млн. кВт), Красноярскую (6 млн. кВт), Братскую (4,6 млн. кВт), Усть-Илимскую (4,3 млн. кВт).

Будущее за использованием нетрадиционных источников энергии - ветровой, энергии приливов, Солнца и внутренней энергии Земли. В нашей стране действует всего две приливные станции (в Охотском море и на Кольском полуострове) и одна геотермальная на Камчатке.

Атомные электростанции (АЭС) используют высокотранспортабельное топливо. Учитывая, что 1 кг урана заменяет 2,5 тыс. т угля, АЭС целесообразнее размещать вблизи потребителя, в первую очередь в районах, лишенных других видов топлива. Первая в мире АЭС была построена в 1954 г. в г. Обнинске (Калужская обл.). Сейчас в России действует 8 атомных электростанций, из которых самыми мощными являются Курская и Балаковская (Саратовская обл.) по 4 млн. кВт каждая. В западных районах страны действуют также Кольская, Ленинградская, Смоленская, Тверская, Нововоронежская, Ростовская, Белоярская. На Чукотке - Билибинская АТЭЦ.

Важнейшая тенденция развития электроэнергетики - объединение электростанций в энергосистемах, которые осуществляют производство, передачу и распределение электроэнергии между потребителями. Они представляют собой территориальное сочетание электростанций разных типов, работающих на общую нагрузку. Объединение электростанций в энергосистемы способствует возможности выбирать наиболее экономичный режим нагрузки для разных типов электростанций; в условиях большой протяженности государства, существования поясного времени и несовпадения пиковых нагрузок в отдельных частях таких энергосистем можно маневрировать производством электроэнергии во времени и пространстве и перебрасывать ее по мере надобности во встречных направлениях.

В настоящее время функционирует Единая энергетическая система (ЕЭС) России. В ее состав входят многочисленные электростанции европейской части и Сибири, которые работают параллельно, в едином режиме, сосредоточивая более 4/5 суммарной мощности электростанций страны. В регионах России восточнее Байкала действуют небольшие изолированные энергосистемы.

Энергетической стратегией России на ближайшее десятилетие предусмотрено дальнейшее развитие электрификации за счет экономически и экологически обоснованного использования ТЭС, АЭС, ГЭС и нетрадиционных возобновляемых видов энергии, повышение безопасности и надежности действующих энергоблоков АЭС.

13 .Легкая промышленность

Лёгкая промышленность - совокупность специализированных отраслей промышленности, производящих главным образом предметы массового потребления из различных видов сырья. Лёгкая промышленность занимает одно из важных мест в производстве валового национального продукта и играет значительную роль в экономике страны.

Лёгкая промышленность осуществляет как первичную обработку сырья, так и выпуск готовой продукции. Предприятия лёгкой промышленности производят также продукцию производственно-технического и специального назначения, которая используется в мебельной, авиационной, автомобильной, химической, электротехнической, пищевой и других отраслях промышленности, в сельском хозяйстве, в силовых ведомствах, на транспорте и в здравоохранении. Одной из особенностей легкой промышленности является быстрая отдача вложенных средств. Технологические особенности отрасли позволяют осуществлять быструю смену ассортимента выпускаемой продукции при минимуме затрат, что обеспечивает высокую мобильность производства.

Лёгкая промышленность объединяет несколько подотраслей:

1.Текстильная.

1.Хлопчатобумажная.

2.Шерстяная.

3.Шёлковая.

4.Льняная.

5.Пенько-джутовая.

6.Трикотажная.

7.Валяльно-войлочная.

8.Сетевязальная.

2.Швейная.

3.Кожевенная.

4.Меховая.

5.Обувная.

Легкая промышленность объединяет группу отраслей, обеспечивающих население предметами потребления (ткани, обувь, одежда), а также выпускающих продукцию промышленного назначения и культурно-бытовые товары (телевизоры, холодильники и др.). Легкая промышленность имеет тесные связи с сельским хозяйством, химической промышленностью и машиностроением. Они снабжают ее сырьем – хлопком, натуральной и искусственной кожей, красителями, а также машинами и оборудованием.

Ведущая отрасль легкой промышленности – текстильная. Она является крупнейшей и по объему производства, и по количеству занятых в ней работников. В ее состав входят производства всех видов тканей, трикотажа, ковров и т. д.

Больше всего производят тканей из химических волокон. Крупнейшим их производителем являются США, опережая ближайших конкурентов – Индию и Японию – почти в три раза. За ними идут «азиатские тигры» – Республика Корея и Тайвань. Больше всего хлопчатобумажных тканей производят развивающиеся страны. Безусловным лидером здесь является Индия, за которой следуют США и Китай. Производство шелковых тканей традиционно для стран Азии, шерстяных – для таких развитых стран, как Великобритания, США, Италия. Они же – главные экспортеры этих тканей. Меньше всего в мире производится льняных тканей. Лидерами в этой отрасли являются Россия, Польша, Беларусь и Франция.

Популярны в быту различные ковры, массовое производство которых развито в США и Индии. Но наиболее ценные ковры ручной работы. Их поставляют на мировой рынок Иран, Афганистан, Турция.

По сравнению с другими отраслями легкой промышленности география текстильной претерпела наибольшие изменения. За последние десятилетия доля развитых стран в мировом текстильном производстве заметно уменьшилась. В развивающихся странах, наоборот, наращиваются темпы развития отрасли. Наряду с давними лидерами – Индией и Египтом – текстильное производство быстро развивается в странах Юго-Восточной Азии, располагающих дешевой рабочей силой.

С текстильной тесно связана швейная и галантерейная промышленность. Пошив готовой одежды уверенно перемещается на восток: Индия и Китай соревнуются на равных с европейскими странами по пошиву одежды массового спроса. Однако и сегодня Рим является центром массовой, а Париж – «высокой» моды.

Кожевенно-обувная промышленность сосредоточена главным образом в развитых странах. Впереди находятся США и Италия. Каждая из этих стран выпускает ежегодно почти 600 млн пар обуви. На первое место по экспорту обуви вышли Китай и Тайвань, производящие дешевую и относительно качественную обувь, в том числе много спортивной.

Предприятия меховой промышленности производят очень дорогую продукцию из природного сырья. В свое время в Канаде вместо денег в обороте были шкуры бобров, а в Сибири – соболиный мех. Четыре страны – Россия, США, Германия и Китай – захватили почти весь мировой меховой рынок. Особую роль играет Греция, где перерабатываются меховые обрезки со всего мира. Во многих странах изготавливают дешевую одежду из искусственного меха.

Важной отраслью легкой промышленности является ювелирное производство, включающее переработку драгоценных металлов и камней. Эта отрасль развита в США, Индии, Израиле, западноевропейских странах. Нидерланды называют «бриллиантовым центром» мира – здесь производится огранка большинства алмазов, добываемых на Земле.

Очень распространено в мире производство игрушек. Оно развито практически в каждой стране, однако выделяются три лидера – США, Китай (Гонконг) и Япония.

По особенностям размещения предприятия легкой промышленности делятся на группы. К первой группе относятся те из них, которые занимаются первичной обработкой сырья и ориентируются на источники сырья. Ко второй – те, которые вырабатывают готовую продукцию. Они размещаются возле потребителя. Третья группа – это предприятия, в размещении которых учитывается как сырьевая база, так и потребитель.

Для легкой промышленности характерна менее выраженная по сравнению с другими отраслями территориальная специализация, так как практически в каждом регионе имеются те или иные ее предприятия. Однако в России можно выделить специализированные узлы и районы, особенно в текстильной промышленности, дающие определенный ассортимент продукции. Например, Ивановская и Тверская области специализируются на выпуске хлопчатобумажных изделий. Центральный экономический район специализируется на производстве продукции всех отраслей текстильной промышленности. Но чаще всего подотрасли легкой промышленности являются дополняющими хозяйственный комплекс регионов, обеспечивающими только внутренние потребности регионов.

Факторы размещения предприятий легкой промышленности разнообразны, однако можно выделить основные.

1. Сырьевой фактор, влияющий преимущественно на размещение предприятий по первичной обработке сырья (например, льнообрабатывающие фабрики расположены в районах производства льна, шерстомоечные предприятия - в районах овцеводства, предприятия по первичной обработке кож - вблизи крупных мясокомбинатов).

2. Населенческий, т. е. потребительский фактор. Готовая продукция легкой промышленности менее транспортабельна по сравнению с полуфабрикатами. Например, дешевле поставлять прессованный хлопок-сырец, чем хлопчатобумажные ткани.

3. Фактор трудовых ресурсов, предусматривающий их значительные размеры и квалификацию, так как все отрасли легкой промышленности трудоемкие. Исторически сложилось так, что в отраслях легкой промышленности используется преимущественно женский труд, поэтому необходимо учитывать возможности использования в регионах и женского, и мужского труда (т. е. развивать легкую промышленность в районах сосредоточения тяжелой индустрии, создавать соответствующие производства в регионах концентрации легкой промышленности).

В прошлом существенную роль в размещении играла обеспеченность топливно-энергетическими ресурсами, так как текстильное и обувное производства являются топливоемкими. В настоящее время этот фактор считается второстепенным в связи с развитием сети ЛЭП, нефте- и газопроводов.

Сырьевая база легкой промышленности России достаточно развита, она обеспечивает значительную часть потребностей предприятий в льноволокне, шерсти, химическом волокне и нитях, пушно-меховом и кожевенном сырье.

Основной поставщик натурального сырья для легкой промышленности - сельское хозяйство.

Электроэнергетика

Эле́ктроэнерге́тика - отрасль энергетики , включающая в себя производство, передачу и сбыт электроэнергии . Электроэнергетика является наиболее важной отраслью энергетики, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электрической энергии является практическая одновременность её генерирования и потребления, так как электрический ток распространяется по сетям со скоростью, близкой к скорости света .

Федеральный закон "Об электроэнергетике" даёт следующее определение электроэнергетики:

Электроэнергетика - отрасль экономики Российской Федерации, включающая в себя комплекс экономических отношений, возникающих в процессе производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии), передачи электрической энергии, оперативно-диспетчерского управления в электроэнергетике, сбыта и потребления электрической энергии с использованием производственных и иных имущественных объектов (в том числе входящих в Единую энергетическую систему России), принадлежащих на праве собственности или на ином предусмотренном федеральными законами основании субъектам электроэнергетики или иным лицам. Электроэнергетика является основой функционирования экономики и жизнеобеспечения.

Определение электроэнергетики содержится также в ГОСТ 19431-84:

Электроэнергетика - раздел энергетики, обеспечивающий электрификацию страны на основе рационального расширения производства и использования электрической энергии.

История

История российской электроэнергетики

Динамика производства электроэнергии в России в 1992-2008 годах, в млрд кВт∙ч

История российской, да и пожалуй, мировой электроэнергетики, берет начало в 1891 году , когда выдающийся ученый Михаил Осипович Доливо-Добровольский осуществил практическую передачу электрической мощности около 220 кВт на расстояние 175 км. Результирующий КПД линии электропередачи, равный 77,4 %, оказался сенсационно высоким для такой сложной многоэлементной конструкции. Такого высокого КПД удалось достичь благодаря использованию трехфазного напряжения , изобретенного самим учёным.

В дореволюционной России, мощность всех электростанций составляла лишь 1,1 млн кВт, а годовая выработка электроэнергии равнялась 1,9 млрд кВт*ч. После революции, по предложению В. И. Ленина был развернут знаменитый план электрификации России ГОЭЛРО . Он предусматривал возведение 30 электростанций суммарной мощностью 1,5 млн кВт, что и было реализовано к 1931 году, а к 1935 году он был перевыполнен в 3 раза.

История белорусской электроэнергетики

Первые сведения об использовании электрической энергии в Беларуси относятся к концу XIX века. Однако и в начале прошлого столетия энергетическая база Беларуси находилась на очень низком уровне развития, что определяло отсталость товарного производства и социальной сферы: на одного жителя приходилось почти в пять раз меньше промышленной продукции, чем в среднем по Российской империи. Основными источниками освещения в городах и деревнях были керосиновые лампы, свечи, лучины.

Первая электростанция в Минске появилась в 1894 году. Она обладала мощностью 300 л.с. К 1913 году на станции были установлены три дизеля разных фирм и ее мощность достигла 1400 л.с.

В ноябре 1897 года дала первый ток электростанция постоянного тока в городе Витебске.

В 1913 году на территории Беларуси была только одна передовая по техническому оборудованию паротурбинная электростанция, которая принадлежала Добрушской бумажной фабрике.

Развитие энергетического комплекса Республики Беларусь начиналась с реализации плана ГОЭЛРО , ставшего первым после революции перспективным планом развития народного хозяйства советского государства. Решение грандиозной задачи электрификации всей страны дало возможность активизировать работы по восстановлению, расширению и строительству новых электростанций в нашей республике. Если в 1913 году мощность всех электростанций на территории Беларуси составляла всего 5,3 МВт, а годовое производство электроэнергии – 4,2 млн кВт ч, то к концу 30-х годов установленная мощность Белорусской энергосистемы уже достигла 129 МВт при годовой выработке электроэнергии 508 млн кВт ч. .

Начало стремительному становлению отрасли положил ввод в эксплуатацию первой очереди Белорусской ГРЭС мощностью 10 МВт – крупнейшей станции в довоенный период. БелГРЭС дала мощный толчок развитию электрических сетей 35 и 110 кВ. В республике сложился технологически управляемый комплекс: электростанция – электрические сети – потребители электроэнергии. Белорусская энергетическая система была создана де-факто, а 15 мая 1931 года принято решение об организации Районного управления государственных электрических станций и сетей Белорусской ССР – «Белэнерго».

На протяжении многих лет Белорусская ГРЭС оставалась ведущей электростанцией республики. Вместе с тем в 1930-е годы развитие энергетической отрасли идет семимильными шагами – появляются новые ТЭЦ, значительно увеличивается протяженность высоковольтных линий, создается потенциал профессиональных кадров. Однако этот яркий рывок вперед был перечеркнут Великой Отечественной. Война привела к практически полному уничтожению электроэнергетической базы республики. После освобождения Беларуси мощность ее электростанций составляла всего 3,4 МВт.

Энергетикам понадобились без преувеличения героические усилия для того, чтобы восстановить и превысить довоенный уровень установленной мощности электростанций и производства электроэнергии.

В последующие десятилетия отрасль продолжала развиваться, ее структура совершенствовалась, создавались новые энергетические предприятия. В конце 1964 года впервые в Беларуси заработала линия электропередачи 330 кВ – «Минск–Вильнюс», которая интегрировала нашу энергосистему в Объединенную энергосистему Северо-Запада, связанную с Единой энергосистемой Европейской части СССР.

Мощность электростанций за 1960–1970 годы выросла с 756 до 3464 МВт, а производство электроэнергии увеличилось с 2,6 до 14,8 млрд кВт∙ч.

Дальнейшее развитие энергетики страны привело к тому, что в 1975 году мощность электростанций достигла 5487 МВт, производство электроэнергии возросло почти в два раза по сравнению с 1970 годом. В последующий период развитие электроэнергетики замедлилось: по сравнению с 1975 годом мощность электростанций в 1991 году увеличилась немногим больше чем на 11 %, а производство электроэнергии – на 7 %.

В 1960–1990 годы общая протяженность электросетей выросла в 7,3 раза. Длина системообразующих ВЛ 220–750 кВ за 30 лет увеличилась в 16 раз и достигла 5875 км.

На 1 января 2010 года мощность электростанций республики составила 8 386,2 МВт, в том числе по ГПО «Белэнерго» – 7 983,8 МВт. Этой мощности достаточно для полного обеспечения потребности страны в электрической энергии. Вместе с тем ежегодно импортируется от 2,4 до 4,5 млрд. кВт ч из России, Украины, Литвы и Латвии в целях загрузки наиболее эффективных мощностей и с учетом проведения ремонта электростанций. Такие поставки способствуют устойчивости параллельной работы энергосистемы Беларуси с другими энергосистемами и надежного энергоснабжения потребителей. .

Мировое производство электроэнергии

Динамика мирового производства электроэнергии (Год - млрд Квт*час):

  • 1890 - 9
  • 1900 - 15
  • 1914 - 37,5
  • 1950 - 950
  • 1960 - 2300
  • 1970 - 5000
  • 1980 - 8250
  • 1990 - 11800
  • 2000 - 14500
  • 2005 - 18138,3
  • 2007 - 19894,8

Основные технологические процессы в электроэнергетике

Генерация электрической энергии

Генерация электроэнергии - это процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями. В настоящее время существуют следующие виды генерации:

  • Тепловая электроэнергетика . В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив. К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов:
    • Конденсационные (КЭС , также используется старая аббревиатура ГРЭС);
    • Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции;

КЭС и ТЭЦ имеют схожие технологические процессы. В обоих случаях имеется котёл , в котором сжигается топливо и за счёт выделяемого тепла нагревается пар под давлением. Далее нагретый пар подаётся в паровую турбину , где его тепловая энергия преобразуется в энергию вращения. Вал турбины вращает ротор электрогенератора - таким образом энергия вращения преобразуется в электрическую энергию, которая подаётся в сеть. Принципиальным отличием ТЭЦ от КЭС является то, что часть нагретого в котле пара уходит на нужды теплоснабжения;

  • Ядерная энергетика . К ней относятся атомные электростанции (АЭС). На практике ядерную энергетику часто считают подвидом тепловой электроэнергетики, так как, в целом, принцип выработки электроэнергии на АЭС тот же, что и на ТЭС. Только в данном случае тепловая энергия выделяется не при сжигании топлива, а при делении атомных ядер в ядерном реакторе . Дальше схема производства электроэнергии ничем принципиально не отличается от ТЭС: пар нагревается в реакторе, поступает в паровую турбину и т. д. Из-за некоторых конструктивных особенностей АЭС нерентабельно использовать в комбинированной выработке, хотя отдельные эксперименты в этом направлении проводились;
  • Гидроэнергетика . К ней относятся гидроэлектростанции (ГЭС). В гидроэнергетике в электрическую энергию преобразуется кинетическая энергия течения воды. Для этого при помощи плотин на реках искусственно создаётся перепад уровней водяной поверхности (т. н. верхний и нижний бьеф). Вода под действием силы тяжести переливается из верхнего бьефа в нижний по специальным протокам, в которых расположены водяные турбины, лопасти которых раскручиваются водяным потоком. Турбина же вращает ротор электрогенератора. Особой разновидностью ГЭС являются гидроаккумулирующие станции (ГАЭС). Их нельзя считать генерирующими мощностями в чистом виде, так как они потребляют практически столько же электроэнергии, сколько вырабатывают, однако такие станции очень эффективно справляются с разгрузкой сети в пиковые часы.

В последнее время исследования показали, что мощность морских течений на много порядков превышает мощность всех рек мира. В связи с этим ведётся создание опытных морских гидроэлектростанций.

  • Альтернативная энергетика . К ней относятся способы генерации электроэнергии, имеющие ряд достоинств по сравнению с «традиционными», но по разным причинам не получившие достаточного распространения. Основными видами альтернативной энергетики являются:
    • Ветроэнергетика - использование кинетической энергии ветра для получения электроэнергии;
    • Гелиоэнергетика - получение электрической энергии из энергии солнечных лучей ; Общими недостатками ветро- и гелиоэнергетики являются относительная маломощность генераторов при их дороговизне. Также в обоих случаях обязательно нужны аккумулирующие мощности на ночное (для гелиоэнергетики) и безветренное (для ветроэнергетики) время;
    • Геотермальная энергетика - использование естественного тепла Земли для выработки электрической энергии. По сути геотермальные станции представляют собой обычные ТЭС, на которых источником тепла для нагрева пара является не котёл или ядерный реактор, а подземные источники естественного тепла. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, то есть, там, где естественные источники тепла наиболее доступны;
    • Водородная энергетика - использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода абсолютно экологически чисто (продуктом сгорания в атмосфере кислорода является дистиллированная вода). Однако в полной мере удовлетворить потребности человечества водородная энергетика на данный момент не в состоянии из-за дороговизны производства чистого водорода и технических проблем его транспортировки в больших количествах. На самом деле, водород - всего лишь носитель энергии, и никак не снимает проблемы добычи этой энергии.
    • Приливная энергетика использует энергию морских приливов . Распространению этого вида электроэнергетики мешает необходимость совпадения слишком многих факторов при проектировании электростанции: необходимо не просто морское побережье, но такое побережье, на котором приливы были бы достаточно сильны и постоянны. Например, побережье Чёрного моря не годится для строительства приливных электростанций, так как перепады уровня воды на Чёрном море в прилив и отлив минимальны.
    • Волновая энергетика при внимательном рассмотрении может оказаться наиболее перспективной. Волны представляют собой сконцентрированную энергию того же солнечного излучения и ветра. Мощность волнения в разных местах может превышать 100 кВт на погонный метр волнового фронта. Волнение есть практически всегда, даже в штиль ("мёртвая зыбь "). На Чёрном море средняя мощность волнения примерно 15 кВт/м. Северные моря России - до 100 кВт/м. Использование волн может обеспечить энергией морские и прибрежные поселения. Волны могут приводить в движение суда. Мощность средней качки судна в несколько раз превышает мощность его силовой установки. Но пока волновые электростанции не вышли за рамки единичных опытных образцов.

Передача и распределение электрической энергии

Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям . Электросетевое хозяйство - естественно-монопольный сектор электроэнергетики: потребитель может выбирать, у кого покупать электроэнергию (то есть энергосбытовую компанию), энергосбытовая компания может выбирать среди оптовых поставщиков (производителей электроэнергии), однако сеть, по которой поставляется электроэнергия, как правило, одна, и потребитель технически не может выбирать электросетевую компанию. С технической точки зрения, электрическая сеть представляет собой совокупность линий электропередачи (ЛЭП) и трансформаторов , находящихся на подстанциях .

  • Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. В настоящее время практически повсеместно используется переменный ток. Электроснабжение в подавляющем большинстве случаев - трёхфазное , поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные .
    • Воздушные линии (ВЛ) подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Как правило, провод на воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах крепления к опорам. На воздушных линиях имеются системы грозозащиты . Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными кабельными линиями): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный контроль состояния линии. Однако, у воздушных ЛЭП имеется ряд недостатков:
      • широкая полоса отчуждения: в окрестности ЛЭП запрещено ставить какие-либо сооружения и сажать деревья; при прохождении линии через лес, деревья по всей ширине полосы отчуждения вырубаются;
      • незащищённость от внешнего воздействия, например, падения деревьев на линию и воровства проводов; несмотря на устройства грозозащиты, воздушные линии также страдают от ударов молнии. По причине уязвимости, на одной воздушной линии часто оборудуют две цепи: основную и резервную;
      • эстетическая непривлекательность; это одна из причин практически повсеместного перехода на кабельный способ электропередачи в городской черте.
    • Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом. Бывают коллекторные и бесколлекторные кабельные линии. В первом случае кабель прокладывается в подземных бетонных каналах - коллекторах . Через определённые промежутки на линии оборудуются выходы на поверхность в виде люков - для удобства проникновения ремонтных бригад в коллектор. Бесколлекторные кабельные линии прокладываются непосредственно в грунте. Бесколлекторные линии существенно дешевле коллекторных при строительстве, однако их эксплуатация более затратна в связи с недоступностью кабеля. Главным достоинством кабельных линий электропередачи (по сравнению с воздушными) является отсутствие широкой полосы отчуждения. При условии достаточно глубокого заложения, различные сооружения (в том числе жилые) могут строиться непосредственно над коллекторной линией. В случае бесколлекторного заложения строительство возможно в непосредственной близости от линии. Кабельные линии не портят своим видом городской пейзаж, они гораздо лучше воздушных защищены от внешнего воздействия. К недостаткам кабельных линий электропередачи можно отнести высокую стоимость строительства и последующей эксплуатации: даже в случае бесколлекторной укладки сметная стоимость погонного метра кабельной линии в разы выше, чем стоимость воздушной линии того же класса напряжения . Кабельные линии менее доступны для визуального наблюдения их состояния (а в случае бесколлекторной укладки - вообще недоступны), что также является существенным эксплуатационным недостатком.

Потребление электрической энергии

По данным Управления по энергетической информации США (EIA - U.S. Energy Information Administration) в 2008 году мировое потребление электроэнергии составило около 17,4 трлн кВт ч .

Виды деятельности в электроэнергетике

Оперативно-диспетчерское управление

Система оперативно-диспетчерского управления в электроэнергетике включает в себя комплекс мер по централизованному управлению технологическими режимами работы объектов электроэнергетики и энергопринимающих установок потребителей в пределах Единой энергетической системы России и технологически изолированных территориальных электроэнергетических систем, осуществляемому субъектами оперативно-диспетчерского управления, уполномоченными на осуществление указанных мер в порядке, установленном Федеральным законом «Об электроэнергетике» . Оперативное управление в электроэнергетике называют диспетчерским, потому что оно осуществляется специализированными диспетчерскими службами. Диспетчерское управление производится централизованно и непрерывно в течение суток под руководством оперативных руководителей энергосистемы - диспетчеров .

Энергосбыт

См. также

Примечания

Ссылки

Топливная
промышленность :
топливо
Органическое
Газообразное Природный газ Генераторный газ Коксовый газ Доменный газ Продукты перегонки нефти Газ подземной газификации Синтез-газ
Жидкое Нефть Бензин Керосин Соляровое масло Мазут

До реформы 2008 года большая часть энергетического комплекса Российской Федерации находилась под управлением РАО «ЕЭС России». Эта компания была создана в 1992 году и к началу «двухтысячных» годов стала практически монополистом российского рынка генерации и энерготранспортировки.

Реформирование отрасли было связано с тем, что РАО «ЕЭС России» неоднократно подвергались критике за неправильное распределение инвестиций, в результате чего значительно выросла аварийность на объектах электроэнергетики. Одной из причин расформирования послужила авария в энергосистеме 25 мая 2005 года в Москве, в результате которой была парализована деятельность многих предприятий, коммерческих и государственных организаций, остановлена работа метрополитена. А кроме этого, РАО «ЕЭС России» часто обвиняли в том, что организация продает электроэнергию по заведомо завышенным тарифам с целью увеличения собственной прибыли.

В результате расформирования РАО «ЕЭС России» была ликвидирована и созданы естественные государственные монополии в сетевой, распределительной и диспетчерской деятельности. Частный был задействован в сфере генерации и сбыта электроэнергии.

На сегодняшний день структура энергетического комплекса выглядит следующим образом:

  • ОАО «Системный оператор Единой энергетической системы» (СО ЕЭС) – осуществляет централизованное оперативно-диспетчерское управление Единой энергетической системой РФ.
  • Некоммерческое партнерство «Совет рынка по организации эффективной системы оптовой и розничной торговли электрической энергией и мощностью» - объединяет продавцов и покупателей оптового рынка электроэнергии.
  • Компании генерирующие электроэнергию. В том числе государственные - «РусГидро», «Росэнергоатом», управляемые совместно государством и частным капиталом ОГК (оптовые генерирующие компании) и ТГК (территориальные генерирующие компании), а также представляющие полностью частный капитал.
  • ОАО «Российские сети» - управление распределительным сетевым комплексом.
  • Энергосбытовые компании. В том числе ОАО «Интер РАО ЕЭС» - компания владельцами которой являются государственные структуры и организации. «Интер РАО ЕЭС» является монополистом по импорту и экспорту электроэнергии в РФ.

Кроме разделения организаций по видам деятельности, существует разделение Единой энергосистемы России на технологические системы действующие по территориальному признаку. Объединенные энергосистемы (ОЭС) не имеют одного собственника, а объединяют энергетические компании отдельно взятого региона и имеют единое диспетчерское управление, которое осуществляется филиалами «СО ЕЭС». На сегодняшний день в России действуют 7 ОЭС:

  • ОЭС Центра (Белгородская, Брянская, Владимирская, Вологодская, Воронежская, Ивановская, Тверская, Калужская, Костромская, Курская, Липецкая, Московская, Орловская, Рязанская, Смоленская, Тамбовская, Тульская, Ярославская энергосистемы);
  • ОЭС Северо-Запада (Архангельская, Карельская, Кольская, Коми, Ленинградская, Новгородская, Псковская и Калининградская энергосистемы);
  • ОЭС Юга (Астраханская, Волгоградская, Дагестанская, Ингушская, Калмыцкая, Карачаево-Черкесская, Кабардино-Балкарская, Кубанская, Ростовская, Северо-Осетинская, Ставропольская, Чеченская энергосистемы);
  • ОЭС Средней Волги (Нижегородская, Марийская, Мордовская, Пензенская, Самарская, Саратовская, Татарская, Ульяновская, Чувашская энергосистемы);
  • ОЭС Урала (Башкирская, Кировская, Курганская, Оренбургская, Пермская, Свердловская, Тюменская, Удмуртская, Челябинская энергосистемы);
  • ОЭС Сибири (Алтайская, Бурятская, Иркутская, Красноярская, Кузбасская, Новосибирская, Омская, Томская, Хакасская, Забайкальская энергосистемы);
  • ОЭС Востока (Амурская, Приморская, Хабаровская и Южно-Якутская энергосистемы).

Основные показатели деятельности

Ключевыми показателями деятельности энергосистемы являются: установленная мощность электростанций, выработка электроэнергии и потребление электроэнергии.

Установленная мощность электростанции – это сумма паспортных мощностей всех генераторов электростанции, которая может меняться в процессе реконструкции действующих генераторов или установки нового оборудования. На начало 2015 года установленная мощность Единой энергосистемы (ЕЭС) России составляла 232.45 тыс. МВт.

На 1 января 2015 года установленная мощность российских электростанций увеличилась на 5 981 МВт по сравнению с 1 января 2014 года. Рост составил 2.6%, а достигнуто это было за счет введения новых мощностей производительностью 7 296 МВт и увеличения мощности действующего оборудования, путем перемаркировки на 411 МВт. При этом были выведены из эксплуатации генераторы мощностью 1 726 МВт. В целом по отрасли по сравнению с 2010 годом рост производственных мощностей составил 8.9%.

Распределение мощностей по объединенным энергосистемам выглядит следующим образом:

  • ОЭС Центра – 52.89 тыс. МВт;
  • ОЭС Северо-Запада – 23.28 тыс. МВт;
  • ОЭС Юга – 20.17 тыс. МВт;
  • ОЭС Средней Волги – 26.94 тыс. МВт;
  • ОЭС Урала – 49.16 тыс. МВт;
  • ОЭС Сибири – 50.95 тыс. МВт;
  • ОЭС Востока – 9.06 тыс. МВт.

Больше всего в 2014 году увеличилась установленная мощность ОЭС Урала – на 2 347 МВт, а также ОЭС Сибири – на 1 547 МВт и ОЭС Центра на 1 465 МВт.

По итогам 2014 года в Российской Федерации было произведено 1 025 млрд. КВтч электроэнергии. По этому показателю Россия занимает 4 место в мире, уступая Китаю в 5 раз, а Соединенным Штатам Америки в 4 раза.

По сравнению с 2013 годом, выработка электроэнергии в Российской Федерации увеличилась на 0.1%. А в отношении к 2009 году рост составил 6.6%, что в количественном выражении составляет 67 млрд. КВтч.

Больше всего электроэнергии в 2014 году в России было произведено тепловыми электростанциями – 677.3 млрд. КВтч, ГЭС произвели – 167.1 млрд. КВтч, а атомные электростанции – 180.6 млрд. КВтч. Производство электроэнергии по объединенным энергосистемам:

  • ОЭС Центра –239.24 млрд. КВтч;
  • ОЭС Северо-Запада –102.47 млрд. КВтч;
  • ОЭС Юга –84.77 млрд. КВтч;
  • ОЭС Средней Волги – 105.04 млрд. КВтч;
  • ОЭС Урала – 259.76 млрд. КВтч;
  • ОЭС Сибири – 198.34 млрд. КВтч;
  • ОЭС Востока – 35.36 млрд. КВтч.

По сравнению с 2013 годом наибольший прирост в выработке электроэнергии был зафиксирован в ОЭС Юга – (+2.3%), а наименьший в ОЭС Средней Волги – (- 7.4%).

Потребление электроэнергии в России в 2014 году составило 1 014 млрд. КВтч. Таким образом, сальдовый остаток составил (+ 11 млрд. КВтч). А наибольшим потребителем электроэнергии по итогам 2014 года в мире является Китай – 4 600 млрд. КВтч, второе место занимают США – 3 820 млрд. КВтч.

По сравнению с 2013 годом потребление электроэнергии в России выросло на 4 млрд. КВтч. Но в целом, динамика потребления за последние 4 года остается примерно на одном и том же уровне. Разница между потреблением электроэнергии за 2010 и 2014 год составляет 2.5%, в пользу последнего.

По итогам 2014 года, потребление электроэнергии по объединенным энергосистемам выглядит следующим образом:

  • ОЭС Центра –232.97 млрд. КВтч;
  • ОЭС Северо-Запада –90.77 млрд. КВтч;
  • ОЭС Юга –86.94 млрд. КВтч;
  • ОЭС Средней Волги – 106.68 млрд. КВтч;
  • ОЭС Урала –260.77 млрд. КВтч;
  • ОЭС Сибири – 204.06 млрд. КВтч;
  • ОЭС Востока – 31.8 млрд. КВтч.

В 2014 году 3 ОЭС имели положительную разницу между произведенной и выработанной электроэнергией. Наилучший показатель у ОЭС Северо-Запада – 11.7 млрд. КВтч, что составляет 11.4% от произведенной электроэнергии, а наихудший у ОЭС Сибири (- 2.9%). Сальдовый остаток электроэнергии по ОЭС РФ выглядит так:

  • ОЭС Центра – 6.27 млрд. КВтч;
  • ОЭС Северо-Запада – 11.7 млрд. КВтч;
  • ОЭС Юга – (- 2.17) млрд. КВтч;
  • ОЭС Средней Волги – (- 1.64) млрд. КВтч;
  • ОЭС Урала – (- 1.01) млрд. КВтч;
  • ОЭС Сибири – (- 5.72) млрд. КВтч;
  • ОЭС Востока – 3.56 млрд. КВтч.

Стоимость 1 КВтч электроэнергии, по итогам 2014 года в России, в 3 раза ниже европейских цен. Среднегодовой европейский показатель составляет 8.4 российских рубля, в то время, как в Российской Федерации средняя стоимость 1 КВтч – 2.7 руб. Лидером по стоимости электроэнергии является Дания – 17.2 рубля за 1 КВтч, второе место занимает Германия – 16.9 рублей. Такие дорогие тарифы связаны в первую очередь с тем, что правительство этих стран отказались от использования атомных электростанций в пользу альтернативных источников энергии.

Если сопоставить стоимость 1 КВтч и среднюю зарплату, то среди европейских стран больше всего в месяц киловатт/час могут купить жители Норвегии – 23 969, второе место занимает Люксембург – 17 945 КВтч, третье Нидерланды – 15 154 КВтч. Среднестатистический россиянин может купить в месяц 9 674 КВтч.

Все российские энергосистемы, а также энергетические системы стран ближнего зарубежья соединены между собой линиями электропередач. Для передачи энергии на дальние расстояния используются высоковольтные линии электропередач мощностью 220 кВ и выше. Они и составляют основу российской энергосистемы и эксплуатируются межсистемными электросетями. Общая протяженность ЛЭП этого класса составляет 153.4 тыс. км., а в целом в Российской Федерации эксплуатируется 2 647.8 тыс. км линий электропередач различной мощности.

Атомная энергетика

Атомная энергетика представляет собой энергетическую отрасль, которая занимается генерацией электроэнергии за счет преобразования ядерной энергии. Атомные электростанции имеют два существенных преимущества перед своими конкурентами – экологичность и экономичность. При соблюдении всех норм эксплуатации АЭС практически не загрязняет окружающую среду, а ядерное топливо сжигается в несоизмеримо меньшем количестве, чем другие виды и топлива и это позволяет экономить на логистике и доставке.

Но, несмотря на эти преимущества, многие страны не хотят развивать атомную энергетику. Связано это в первую очередь с боязнью экологической катастрофы, которая может произойти в результате аварии на АЭС. После аварии на Чернобыльской АЭС в 1986 году к объектам атомной энергетики по всему миру приковано пристальное внимание мировой общественности. Поэтому эксплуатируются АЭС, в основном в развитых в техническом и экономическом отношении государствах.

По данным за 2014 год, атомная энергетика обеспечивает около 3% потребления мировой электроэнергии. На сегодняшний день электростанции с ядерными реакторами функционируют в 31 стране мира. А всего в мире насчитывается 192 атомные электростанции с 438 энергоблоками. Общая мощность всех АЭС мира составляет около 380 тыс. МВт. Наибольшее количество атомных электростанций находится в США – 62, второе место занимает Франция – 19, третье Япония – 17. В Российской Федерации функционирует 10 АЭС и это 5 показатель в мире.

АЭС Соединенных Штатов Америки в общей сложности вырабатывают 798.6 млрд. КВтч, это наилучший показатель в мире, но в структуре вырабатываемой электроэнергии всеми электростанциями США, атомная энергетика составляет около 20%. Наибольшая доля в выработке электроэнергии атомными электростанциями во Франции, АЭС этой страны вырабатывают 77% всей электроэнергии. Выработка французских атомных электростанций составляет 481 млрд. КВтч в год.

По итогам 2014 года, российскими АЭС было сгенерировано 180.26 млрд. КВтч электроэнергии, это на 8.2 млрд. КВтч больше чем в 2013 году, в процентом отношении разница составляет 4.8%. Производство электроэнергии атомными электростанциями России составляет более 17.5% от общего количества всей произведенной в РФ электроэнергии.

Что касается выработки электроэнергии атомными электростанциями по объединенным энергосистемам, то наибольшее количество было сгенерировано АЭС Центра – 94.47 млрд. КВтч – это чуть более половины всей выработки страны. А доля атомной энергетики в этой объединенной энергосистеме самая большая – около 40%.

  • ОЭС Центра – 94. 47 млрд. КВтч (39.8% от всей сгенерированной электроэнергии);
  • ОЭС Северо-Запада –35.73 млрд. КВтч (35% от всей энергии);
  • ОЭС Юга –18.87 млрд. КВтч (22.26% от всей энергии);
  • ОЭС Средней Волги –29.8 млрд. КВтч (28.3% от всей энергии);
  • ОЭС Урала – 4.5 млрд. КВтч (1.7% от всей энергии).

Такое неравномерное распределение выработки связано с месторасположением российских АЭС. Большая часть мощностей атомных электростанций сконцентрирована в европейской части страны, тогда как в Сибири и Дальнем Востоке они отсутствуют вовсе.

Самая крупная АЭС в мире – японская Касивадзаки-Карива, ее мощность составляет 7 965 МВт, а крупнейшая европейская АЭС – Запорожская, мощность которой около 6 000 МВт. Находится она в украинском городе Энергодар. В Российской Федерации самые крупные АЭС имеют мощности по 4 000 МВт, остальные от 48 до 3 000 МВт. Список российских атомных электростанций:

  • Балаковская АЭС – мощность 4 000 МВт. Находится в Саратовской области, неоднократно признавалась лучшей АЭС России. Располагает 4 энергоблоками, была введена в эксплуатацию в 1985 году.
  • Ленинградская АЭС – мощность 4 000 МВт. Крупнейшая АЭС Северо-Западного ОЭС. Располагает 4 энергоблоками, была введена в эксплуатацию в 1973 году.
  • Курская АЭС – мощность 4 000 МВт. Состоит из 4 энергоблоков, начало эксплуатации – 1976 год.
  • Калининская АЭС – мощность 4 000 МВт. Находится на севере Тверской области, располагает 4 энергоблоками. Открыта в 1984 году.
  • Смоленская АЭС – мощность 3 000 МВт. Признавалась лучшей АЭС России в 1991, 1992, 2006 2011 годах. Имеет 3 энергоблока, первый был запущен в эксплуатацию в 1982 году.
  • Ростовская АЭС – мощность 2 000 МВт. Крупнейшая электростанция юга России. На станции введены в эксплуатацию 2 энергоблока, первый в 2001 году, второй в 2010.
  • Нововоронежская АЭС – мощность 1880 МВт. Обеспечивает электроэнергией около 80% потребителей Воронежской области. Первый энергоблок был запущен в сентябре 1964 года. Сейчас действуют 3 энергоблока.
  • Кольская АЭС – мощность 1760 МВт. Первая в России АЭС построенная за полярным кругом, обеспечивает около 60% потребления электричества Мурманской области. Располагает 4 энергоблоками, была открыта в 1973 году.
  • Белоярская АЭС – мощность 600 МВт. Находится в Свердловской области. Была введена в эксплуатацию в апреле 1964 года. Является старейшей из ныне действующих АЭС в России. Сейчас действует только 1 энергоблок из трех предусмотренных проектом.
  • Билибинская АЭС – мощность 48 МВт. Является частью изолированной Чаун-Билибинской энергосистемы вырабатывая около 75% потребляемой ею электроэнергии. Была открыта в 1974 году, состоит из 4 энергоблоков.

Помимо существующих АЭС, в России ведется строительство еще 8 энергоблоков, а также плавучей атомной электростанции малой мощности.

Гидроэнергетика

Гидроэлектростанции обеспечивают довольно невысокую стоимость одного выработанного КВтч энергии. По сравнению с тепловыми электростанциями производство 1 КВтч на ГЭС обходится дешевле в 2 раза. Связано это с довольно простым принципом работы гидроэлектростанций. Строятся специальные гидротехнические сооружения которые обеспечивают необходимый напор воды. Вода, попадая на лопасти турбины, приводит ее в движение, которая в свою очередь приводит в действие генераторы вырабатывающие электроэнергию.

Но повсеместное использование ГЭС невозможно, так как необходимым условием эксплуатации является наличие мощного движущегося водного потока. Поэтому гидроэлектростанции сооружаются на полноводных крупных реках. Еще одним существенным недостатком ГЭС является перекрытие русла рек, что затрудняет нерест рыбы и затапливание больших объемов земельных ресурсов.

Но несмотря на негативные последствия для окружающей среды, гидроэлектростанции продолжают функционировать и строится на крупнейших реках мира. Всего в мире функционируют ГЭС общей мощностью около 780 тыс. МВт. Общее количество ГЭС подсчитать затруднительно, так как в мире действуют множество мелких ГЭС, работающих на нужны отдельного города, предприятия, а то и вовсе частного хозяйства. В среднем гидроэнергетика обеспечивает производство около 20% всей мировой электроэнергии.

Среди всех стран мира более всех от гидроэнергетики зависит Парагвай. В стране 100% электроэнергии вырабатывается на гидроэлектростанциях. Помимо этой страны от гидроэнергетики очень сильно зависят Норвегия, Бразилия, Колумбия.

Наибольшие гидроэлектростанции находятся в Южной Америке и Китае. Самая большая в мире гидроэлектростанция – Санься на реке Янзцы, ее мощность достигает 22 500 МВт, второе место занимает ГЭС на реке Парана – Итайпу, с мощностью 14 000 МВт. Самая крупная ГЭС России – Саяно-Шушенская, ее мощность около 6 400 МВт.

Помимо Саяно-Шушенской ГЭС в России действуют еще 101 гидроэлектростанция с мощностью более 100 МВт. Крупнейшие ГЭС России:

  • Саяно-Шушенская – Мощность - 6 400 МВт, среднегодовое производство электроэнергии – 19.7 млрд. КВтч. Дата ввода в эксплуатацию – 1985 год. ГЭС находится на Енисее.
  • Красноярская – Мощность 6 000 МВт, среднегодовое производство электроэнергии – около 20 млрд. КВтч, запущена в эксплуатацию в 1972 году, также расположена на Енисее.
  • Братская – Мощность 4 500 МВт, расположена на Ангаре. В год в среднем вырабатывает около 22.6 млрд. КВтч. Введена в эксплуатацию в 1961 году.
  • Усть-Илимская – Мощность 3 840 МВт, расположена на Ангаре. Среднегодовая производительность 21.7 млрд. КВтч. Была построена в 1985 году.
  • Богучанская ГЭС – Мощность около 3 000 МВт, была построена на Ангаре в 2012 году. Производит около 17.6 млрд. КВтч в год.
  • Волжская ГЭС – Мощность 2 640 МВт. Построена в 1961 году в Волгоградской области, среднегодовая производительность 10.43 КВтч.
  • Жигулевскя ГЭС – Мощность около 2 400 МВт. Была построена в 1955 году на реке Волга в Самарской области. В год производит около 11.7 КВтч электроэнергии.

Что касается объединенных энергетических систем, то наибольшую долю в выработке электроэнергии с помощью ГЭС имеют ОЭС Сибири и Востока. В этих ОЭС на долю гидроэлектростанций приходится 47.5 и 35.3% всей выработанной электроэнергии, соответственно. Это объясняется наличием в этих регионах крупных полноводных рек бассейна Енисея и Амура.

По итогам 2014 года ГЭС России было произведено более 167 млрд. КВтч электроэнергии. По сравнению с 2013 годом этот показатель уменьшился на 4.4%. Наибольший вклад в генерацию электроэнергии с помощью ГЭС внесла ОЭС Сибири – около 57% от общероссийского.

Теплоэнергетика

Теплоэнергетика является основой энергетического комплекса подавляющего большинства стран мира. Несмотря на то, что у тепловых электростанций масса недостатков, связанных с загрязнением окружающей среды и высокой себестоимостью электроэнергии, они используются повсеместно. Причина такой популярности – универсальность ТЭС. Тепловые электростанции могут работать на различных видах топлива и при проектировании обязательно учитывается какие энергоресурсы являются оптимальными для данного региона.

С помощью тепловых электростанций производится около 90% всей мировой электроэнергии. При этом на долю ТЭС использующих в качестве топлива нефтепродукты приходится производство 39% всей мировой энергии, ТЭС работающих на угле – 27%, а на долю газовых тепловых электростанций – 24% сгенерированного электричества. В некоторых странах существует сильная зависимость ТЭС от одного вида топлива. Например, подавляющее большинство польских ТЭС работают на угле, такая же ситуация и в ЮАР. А вот большинство тепловых электростанций в Нидерландах используют в качестве топлива природный газ.

В Российской Федерации основными видами топлива для ТЭС являются природный и попутный нефтяной газ и уголь. Причем на газу работает большинство ТЭС европейской части России, а угольные ТЭС преобладают в южной Сибири и Дальнем Востоке. Доля электростанций использующих в качестве основного топлива мазут незначительна. Кроме этого многие тепловые электростанции в России используют несколько видов топлива. Например, Новочеркасская ГРЭС в Ростовской области использует все три основных вида топлива. Доля мазута составляет 17%, газа – 9%, а угля – 74%.

По количеству произведенной электроэнергии в РФ в 2014 году тепловые электростанции прочно удерживают лидирующие позиции. Всего за прошедший год, ТЭС произвели 621.1 млрд. КВтч, это на 0.2% меньше чем в 2013 году. А в целом выработка электроэнергии тепловыми электростанциями РФ, снизилась до уровня 2010 года.

Если рассматривать выработку электроэнергии в разрезе ОЭС, то в каждой энергосистеме на долю ТЭС приходится наибольшее производство электричества. Больше всего доля ТЭС в ОЭС Урала – 86.8%, а наименьшая в ОЭС Северо-Запада – 45.4%. Что касается количественного производства электроэнергии, то в разрезе ОЭС это выглядит следующим образом:

  • ОЭС Урала – 225.35 млрд. КВтч;
  • ОЭС Центра – 131.13 млрд. КВтч;
  • ОЭС Сибири – 94.79 млрд. КВтч;
  • ОЭС Средней Волги – 51.39 млрд. КВтч;
  • ОЭС Юга – 49.04 млрд. КВтч;
  • ОЭС Северо-Запада – 46.55 млрд. КВтч;
  • ОЭС Дальнего Востока – 22.87 млрд. КВтч.

Тепловые электростанции в России разделяются на два вида ТЭЦ и ГРЭС. Теплоэлектроцентраль (ТЭЦ) представляет собой электростанцию с возможностью отбора тепловой энергии . Таким образом, ТЭЦ производит не только электроэнергию, но и тепловую энергию, использующуюся для горячего водоснабжения и отопления помещений. ГРЭС – тепловая электростанция производящая только электроэнергию. Аббревиатура ГРЭС осталась с советских времен и означала государственная районная электростанция.

На сегодняшний день в Российской Федерации функционирует около 370 тепловых электростанций. Из них 7 имеют мощность свыше 2 500 МВт:

  • Сургутская ГРЭС – 2 – мощность 5 600 МВт, виды топлива – природный и попутный нефтяной газ – 100%.
  • Рефтинская ГРЭС – мощность 3 800 МВт, виды топлива – уголь – 100%.
  • Костромская ГРЭС – мощность 3 600 МВт, виды топлива – природный газ -87%, уголь – 13%.
  • Сургутская ГРЭС – 1 – мощность 3 270 МВт, виды топлива – природный и попутный нефтяной газ – 100%.
  • Рязанская ГРЭС – мощность 3070 МВт, виды топлива – мазут – 4%, газ – 62%, уголь – 34%.
  • Киришская ГРЭС – мощность 2 600 МВт, виды топлива – мазут – 100%.
  • Конаковская ГРЭС – мощность 2 520 МВт, виды топлива – мазут – 19%, газ – 81%.

Перспективы развития отрасли

Последние несколько лет в российском энергетическом комплексе сохраняется положительный баланс между выработанной и потребленной электроэнергией. Как правило, общее количество потребленной энергии составляет 98-99% от выработанной. Таким образом можно сказать, что существующие производственные мощности полностью перекрывают потребности страны в электроэнергии.

Основные направления деятельности российских энергетиков направлены на повышение электрификации удаленных районов страны, а также на обновление и реконструкцию уже существующих мощностей.

Необходимо отметить, что стоимость электроэнергии в России существенно ниже, чем в странах Европы и Азиатско - Тихоокеанского региона, поэтому разработке и внедрению новых альтернативных источников получения энергии, не уделяется должного внимания. Доля в общем производстве электроэнергии ветроэнергетики, геотермальной энергетики и солнечной энергетики в России не превышает 0.15% от общего количества. Но если геотермальная энергетика очень сильно ограничена территориально, а солнечная энергетика в России не развивается в промышленных масштабах, то пренебрежение ветроэнергетикой является недопустимым.

На сегодняшний день в мире, мощность ветряных генераторов составляет 369 тыс. МВт, что всего на 11 тыс. МВт меньше, чем мощность энергоблоков всех АЭС мира. Экономический потенциал российской ветроэнергетики составляет около 250 млрд. КВтч в год, что равняется примерно четверти всей потребляемой электроэнергии в стране. На сегодняшний день производство электроэнергии с помощью ветрогенераторов не превышает 50 млн. КВтч в год.

Необходимо также отметить повсеместное внедрение энергосберегающих технологий, во все виды хозяйственной деятельности, которое наблюдается в последние годы. На производствах и в домашних хозяйствах используются различные приборы позволяющие сократить расход электроэнергии, а в современном строительстве активно используют теплоизоляционные материалы. Но, к сожалению, несмотря даже на принятый в 2009 году Федеральный Закон «Об энергосбережении и повышении энергетической эффективности в Российской Федерации», по уровню экономии электроэнергии и энергосбережения, РФ очень сильно отстает от стран Европы и США.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

Все существующие виды электроэнергетики можно разделить на уже достигшие зрелости и находящиеся на стадии разработки и развития. Для одних требуется только модернизация, для других – инновационные технологические решения.

К зрелым видам электроэнергетики в первую очередь можно отнести тепловую, атомную, и гидроэнергетику. С определенными оговорками в эту группу попадают также некоторые виды альтернативной энергетики: солнечная, ветровая, приливная и пр. Они активно применяются во многих странах, но в силу некоторых ограничений не получили повсеместное распространение. Ну а на стадии формирования сейчас находятся другие виды энергетики: бестопливная энергетика, термоядерная энергетика и пр.

На территории России наибольшее распространение среди различных видов электроэнергетики получила тепловая энергетика, преимущественно газовая и угольная. Тепловые электростанции, которые работают на органическом топливе, традиционно находятся на лидирующих позициях в российской электроэнергетике. Это сложилось исторически и считается экономически оправданным.

Атомную энергетику на практике также иногда относят к подвиду тепловой электроэнергетики, потому как в результате деления атомных ядер в реакторе выделяется тепло, и далее все происходит так же, как и при сгорании органического топлива. Атомная энергетика в России — довольно популярный вид электроэнергетики. В нашей стране применяется полный цикл технологий от добычи урановых руд до выработки электроэнергии. Однако крупные аварии АЭС, которые имели место в последние десятки лет, настроили мировую общественность против этого вида электроэнергетики.

В гидроэнергетике для получения электрической энергии используют кинетическую энергию течения воды. ГЭС для функционирования требуется практически столько же электроэнергии, сколько они вырабатывают. Поэтому ГЭС, по сути, не являются генерирующими мощностями в чистом виде. Но такие станции при необходимости эффективно покрывают пиковые нагрузки, тем самым гидроэнергетика выгодно выделяется среди других видов электроэнергетики.

К альтернативным видам электроэнергетики относят ветровую и солнечную энергетику, которые по некоторым причинам не получили достаточное распространение. На данный момент ветровые и солнечные станции являются маломощными при дороговизне оборудования для них. К тому же обязательно необходим резервный источник питания (при отсутствии ветра или в ночное время соответственно). Также к альтернативным видам электроэнергетики относят приливную гидроэнергетику. Для строительства приливной электростанции необходимо морское побережье с достаточно сильными колебаниями уровня воды, иначе это будет экономически нецелесообразно.

Преимуществом альтернативных видов электроэнергетики является возобновляемость источников такой энергии. Их применение позволяет существенно сэкономить органическое топливо, сохраняя запасы углеводородов. Научные исследования, проводимые в области альтернативных видов электроэнергетики, делают их все более доступными для применения. Возобновляемая энергетика получает все большее географическое распространение по всему миру.

Существуют и другие виды электроэнергетики, технология которых пока малоизвестна. К ним можно отнести разработку прямых способов получения электроэнергии из окружающей среды с помощью накапливающихся зарядов ионосферы, использования энергии вращения земли и др. Использование различных видов электроэнергетики позволяет наиболее эффективно распределить нагрузку, покрывая мировой спрос на электроэнергию и создавая необходимый резерв мощности.

Что еще почитать