Золотое сечение пропорция в природе. Золотое сечение

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения - высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

Золотое сечение - гармоническая пропорция

В математике пропорцией (лат. proportio) называют равенство двух отношений: a : b = c : d .

Отрезок прямой АВ можно разделить на две части следующими способами:



    на две равные части - АВ : АС = АВ : ВС ;



    на две неравные части в любом отношении (такие части пропорции не образуют);



    таким образом, когда АВ : АС = АС : ВС .


Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.

Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему

a : b = b : c или с : b = b : а .

Рис. 1. Геометрическое изображение золотой пропорции

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Рис. 2. Деление отрезка прямой по золотому сечению. BC = 1/2 AB ; CD = BC

Из точки В восставляется перпендикуляр, равный половине АВ . Полученная точка С соединяется линией с точкой А . На полученной линии откладывается отрезок ВС , заканчивающийся точкой D . Отрезок AD переносится на прямую АВ . Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая - 38 частям.

Свойства золотого сечения описываются уравнением:

x 2 - x - 1 = 0.

Решение этого уравнения:

Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.

Второе золотое сечение

Болгарский журнал «Отечество» (№10, 1983 г.) опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и дает другое отношение 44: 56.

Такая пропорция обнаружена в архитектуре, а также имеет место при построении композиций изображений удлиненного горизонтального формата.

Рис. 3. Построение второго золотого сечения

Деление осуществляется следующим образом (см. рис.3). Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD . Радиусом АВ находится точка D , которая соединяется линией с точкой А . Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD . Точка Е делит отрезок AD в отношении 56: 44.

Рис. 4. Деление прямоугольника линией второго золотого сечения

На рис. 4 показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.

Золотой треугольник

Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой .

Рис. 5. Построение правильного пятиугольника и пентаграммы

Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер (1471...1528). Пусть O - центр окружности, A - точка на окружности и Е - середина отрезка ОА . Перпендикуляр к радиусу ОА , восставленный в точкеО , пересекается с окружностью в точке D . Пользуясь циркулем, отложим на диаметре отрезок CE = ED . Длина стороны вписанного в окружность правильного пятиугольника равна DC . Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.

Рис. 6. Построение золотого треугольника

Проводим прямую АВ . От точки А откладываем на ней три раза отрезок О произвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ , на перпендикуляре вправо и влево от точки Р откладываем отрезки О . Полученные точки d и d 1 соединяем прямыми с точкой А . Отрезок dd 1 откладываем на линию Ad 1 , получая точку С . Она разделила линию Ad 1 в пропорции золотого сечения. Линиями Ad 1 и dd 1 пользуются для построения «золотого» прямоугольника.

История золотого сечения

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Рис. 7. Динамические прямоугольники

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

Рис. 8. Античный циркуль золотого сечения

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли «Божественная пропорция» с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее «божественную суть» как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок - бога отца, а весь отрезок - бога духа святого).

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению названиезолотое сечение . Так оно и держится до сих пор как самое популярное.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. «Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать».

Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица - ртом и т.д. Известен пропорциональный циркуль Дюрера.

Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).

Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, - писал он, - что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

Если на прямой произвольной длины, отложить отрезок m , рядом откладываем отрезок M . На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов

Рис. 9. Построение шкалы отрезков золотой пропорции

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы «вместе с водой выплеснули и ребенка». Вновь «открыто» золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».

Рис. 10. Золотые пропорции в частях тела человека

Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа - важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела - длина плеча, предплечья и кисти, кисти и пальцев и т.д.

Рис. 11. Золотые пропорции в фигуре человека

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название «Золотое деление как основной морфологический закон в природе и искусстве». В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.

В конце XIX - начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д.

Ряд Фибоначчи

С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0,617, а 34: 55 = 0,618. Это отношение обозначается символом Ф . Только это отношение - 0,618: 0,382 - дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16...

Обобщенное золотое сечение

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления.

Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.

Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд гирь 1, 2, 4, 8, 16... на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2..., во втором - это сумма двух предыдущх чисел 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2.... Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?

Действительно, зададимся числовым параметром S , который может принимать любые значения: 0, 1, 2, 3, 4, 5... Рассмотрим числовой ряд, S + 1 первых членов которого - единицы, а каждый из последующих равен сумме двух членов предыдущего и отстоящего от предыдущего на S шагов. Если n -й член этого ряда мы обозначим через φ S (n ), то получим общую формулу φ S (n ) = φ S (n - 1) + φ S (n - S - 1).

Очевидно, что при S = 0 из этой формулы мы получим «двоичный» ряд, при S = 1 - ряд Фибоначчи, при S = 2, 3, 4. новые ряды чисел, которые получили название S -чисел Фибоначчи.

В общем виде золотая S -пропорция есть положительный корень уравнения золотого S -сечения x S+1 - x S - 1 = 0.

Нетрудно показать, что при S = 0 получается деление отрезка пополам, а при S = 1 -знакомое классическое золотое сечение.

Отношения соседних S -чисел Фибоначчи с абсолютной математической точностью совпадают в пределе с золотыми S -пропорциями! Математики в таких случаях говорят, что золотые S -сечения являются числовыми инвариантами S -чисел Фибоначчи.

Факты, подтверждающие существование золотых S -сечений в природе, приводит белорусский ученый Э.М. Сороко в книге «Структурная гармония систем» (Минск, «Наука и техника», 1984). Оказывается, например, что хорошо изученные двойные сплавы обладают особыми, ярко выраженными функциональными свойствами (устойчивы в термическом отношении, тверды, износостойки, устойчивы к окислению и т. п) только в том случае, если удельные веса исходных компонентов связаны друг с другом одной из золотых S -пропорций. Это позволило автору выдвинуть гипотезe о том, что золотыеS -сечения есть числовые инварианты самоорганизующихся систем. Будучи подтвержденной экспериментально, эта гипотеза может иметь фундаментальное значение для развития синергетики - новой области науки, изучающей процессы в самоорганизующихся системах.

С помощью кодов золотой S -пропорции можно выразить любое действительное число в виде суммы степеней золотых S -пропорций с целыми коэффициентами.

Принципиальное отличие такого способа кодирования чисел заключается в том, что основания новых кодов, представляющие собой золотые S -пропорции, при S > 0 оказываются иррациональными числами. Таким образом, новые системы счисления с иррациональными основаниями как бы ставят «с головы на ноги» исторически сложившуюся иерархию отношений между числами рациональными и иррациональными. Дело в том, что сначала были «открыты» числа натуральные; затем их отношения - числа рациональные. И лишь позже - после открытия пифагорийцами несоизмеримых отрезков - на свет появились иррациональные числа. Скажем, в десятичной, пятеричной, двоичной и других классических позиционных системах счисления в качестве своеобразной первоосновы были выбраны натуральные числа - 10, 5, 2, - из которых уже по определенным правилам конструировались все другие натуральные, а также рациональные и иррациональные числа.

Своего рода альтернативой существующим способам счисления выступает новая, иррациональная система, в качестве первоосновы, начала счисления которой выбрано иррациональное число (являющееся, напомним, корнем уравнения золотого сечения); через него уже выражаются другие действительные числа.

В такой системе счисления любое натуральное число всегда представимо в виде конечной - а не бесконечной, как думали ранее! - суммы степеней любой из золотых S -пропорций. Это одна из причин, почему «иррациональная» арифметика, обладая удивительной математической простотой и изяществом, как бы вобрала в себя лучшие качества классической двоичной и «Фибоначчиевой» арифметик.

Принципы формообразования в природе

Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах - рост вверх или расстилание по поверхности земли и закручивание по спирали.

Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.

Рис. 12. Спираль Архимеда

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль «кривой жизни».

Среди придорожных трав растет ничем не примечательное растение - цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок.

Рис. 13. Цикорий

Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий - 38, четвертый - 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Рис. 14. Ящерица живородящая

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции - длина ее хвоста так относится к длине остального тела, как 62 к 38.

И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы - симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста.

Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Рис. 15. Яйцо птицы

Великий Гете, поэт, естествоиспытатель и художник (он рисовал и писал акварелью), мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввел в научный обиход термин морфология.

Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.

Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Золотое сечение и симметрия

Золотое сечение нельзя рассматривать само по себе, отдельно, без связи с симметрией. Великий русский кристаллограф Г.В. Вульф (1863...1925) считал золотое сечение одним из проявлений симметрии.

Золотое деление не есть проявление асимметрии, чего-то противоположного симметрии Согласно современным представлениям золотое деление - это асимметричная симметрия. В науку о симметрии вошли такие понятия, как статическая и динамическая симметрия . Статическая симметрия характеризует покой, равновесие, а динамическая - движение, рост. Так, в природе статическая симметрия представлена строением кристаллов, а в искусстве характеризует покой, равновесие и неподвижность. Динамическая симметрия выражает активность, характеризует движение, развитие, ритм, она - свидетельство жизни. Статической симметрии свойственны равные отрезки, равные величины. Динамической симметрии свойственно увеличение отрезков или их уменьшение, и оно выражается в величинах золотого сечения возрастающего или убывающего ряда.

ЗОЛОТОЕ СЕЧЕНИЕ - БОЖЕСТВЕННАЯ МЕРА КРАСОТЫ,
СОТВОРЕННАЯ В ПРИРОДЕ.

Золотое сечение - Божественная мера красоты, сотворенная в природе.

Аллах для всего установил должную меру. (Сура "Ат Таляк", 65:3)

…В творении Всемилостивого (Аллаха) ты не найдешь ни доли
нарушений и несоответствий. Вновь обрати взор свой вокруг, видишь ли
ты какой-нибудь изъян? И вновь свой взор ты обрати: вернется он
униженным и тщетным (не найдя ни доли несоответствия).
(Сура "Аль Мульк", 67:3-4)

"… Если с точки зрения исполнения или функции элемента какая-либо форма имеет пропорциональность и приятна, привлекательна для взора, то в таком случае мы можем тотчас же искать в ней какую-либо из функций Золотого Числа … Золотое Число вовсе не математический вымысел. Это на самом деле продукт закона природы, основанный на правилах пропорциональности." 1

Давайте выясним, что общего между древнеегипетскими пирамидами, картиной Леонардо да Винчи "Мона Лиза", подсолнухом, улиткой, сосновой шишкой и пальцами человека?

Ответ на этот вопрос сокрыт в удивительных числах, которые были открыты итальянским математиком средневековья Леонардо Пизанским, более известным по именем Фибоначчи ((род. о к. 1170 - умер после 1228), итальянский математик. Путешествуя по Востоку, познакомился с достижениями арабской математики; способствовал передаче их на Запад. Основные работы "Liber Abaci" (1202) - трактат об арифметике (индийские цифры) и алгебре (до квадратных уравнений), "Practica Geometriae" (1220)).

После его открытия числа эти так и стали называться именем известного математика. Удивительная суть последовательности чисел Фибоначчи состоит в том, что каждое число в этой последовательности получается из суммы двух предыдущих чисел. 2

Числа, образующие последовательность 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ... называются "числами Фибоначчи" , а сама последовательность - последовательностью Фибоначчи .

В числах Фибоначчи существует одна очень интересная особенность. При делении любого числа из последовательности на число, стоящее перед ним в ряду, результатом всегда будет величина, колеблющаяся около иррационального значения 1.61803398875... и через раз то пp евосходящая, то не достигающая его.
(Прим. иррациональное число, т.е. число, десятичное представление которого бесконечно и не периодично)

Более того, после 13-ого числа в последовательности этот результат деления становится постоянным до бесконечности ряда… И менно это постоянное число деления в средние века было названо Божественной пропорцией, а ныне в наши дни именуется как золотое сечение , золотое сpеднее или золотая пропорция.

В алгебp е это число обозначается гpеческой буквой фи (Ф )

Итак, Золотая пропорция = 1 : 1,618

233 / 144 = 1,618
377 / 233 = 1,618
610 / 377 = 1,618
987 / 610 = 1,618
1597 / 987 = 1,618
2584 / 1597 = 1,618

Тело человека и золотое сечение

Художники, ученые, модельеры, дизайнеры делают свои расчеты, чертежи или наброски, исходя из соотношения золотого сечения. Они используют мерки с тела человека, сотворенного также по принципу золотой сечения. Леонардо Д а Винчи и Ле Корбюзье перед тем как создавать свои шедевры брали параметры человеческого тела, созданного по закону Золотой пропорции.

Самая главная книга всех современных архитекторов справочник Э.Нойферта "Строительное проектирование" содержит основные расчеты параметров туловища человека, заключающие в себе золотую пропорцию.

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными. Принцип расчета золотой меры на теле человека можно изобразить в виде схемы. 3

M/m=1,618

Первый пример золотого сечения в строении тела человека:
Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618.

Кроме этого есть и еще несколько основных золотых пропорции нашего тела:

  • расстояние от кончиков пальцев до запястья и от запястья до локтя равно 1:1.618
  • расстояние от уровня плеча до макушки головы и размера головы равно 1:1.618
  • расстояние от точки пупа до макушки головы и от уровня плеча до макушки головы равно 1:1.618
  • расстояние точки пупа до коленей и от коленей до ступней равно 1:1.618
  • расстояние от кончика подбородка до кончика верхней губы и от кончика верхней губы до ноздрей равно 1:1.618
  • расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1.618

Золотое сечение в чертах лица человека как критерий совершенной красоты.

В строении черт лица человека также есть множество примеров, приближающихся по значению к формуле золотого сечения. Однако не бросайтесь тотчас же за линейкой, чтобы обмерять лица всех людей. Потому что точные соответствия золотому сечению, по мнению ученых и людей искусства, художников и скульпторов, существуют только у людей с совершенной красотой. Собственно точное наличие золотой пропорции в лице человека и есть идеал красоты для человеческого взора.

К примеру, если мы суммируем ширину двух передних верхних зубов и разделим эту сумму на высоту зубов, то, получив при этом число золотого сечения, можно утверждать, что строение этих зубов идеально.

На человеческом лице существуют и иные воплощения правила золотого сечения. Приведем несколько таких соотношений:

  • Высота лица / ширина лица,
  • Центральная точка соединения губ до основания носа / длина носа.
  • Высота лица / расстояние от кончика подбородка до центральной точки соединения губ
  • Ширина рта / ширина носа,
  • Ширина носа / расстояние между ноздрями,
  • Расстояние между зрачками / расстояние между бровями.

Рука человека

Достаточно лишь приблизить сейчас вашу ладонь к себе и внимательно посмотреть на указательный палец, и вы сразу же найдете в нем формулу золотого сечения. Каждый палец нашей руки состоит из трех фаланг.

Сумма двух первых фаланг пальца в соотношении со всей длиной пальца и дает число золотого сечения (за исключением большого пальца).

Кроме того, соотношение между средним пальцем и мизинцем также равно числу золотого сечения. 4

У человека 2 руки, пальцы на каждой руке состоят из 3 фаланг (за исключением большого пальца). На каждой руке имеется по 5 пальцев, то есть всего 10, но за исключением двух двухфаланговых больших пальцев только 8 пальцев создано по принципу золотого сечения. Тогда как все эти цифры 2, 3, 5 и 8 есть числа последовательности Фибоначчи.

Золотая пропорция в строении легких человека

Американский физик Б.Д.Уэст и доктор А.Л. Гольдбергер во время физико-анатомических исследований установили, что в строении легких человека также существует золотое сечение. 5

Особенность бронхов, составляющих легкие человека, заключена в их асимметричности. Бронхи состоят из двух основных дыхательных путей, один из которых (левый) длиннее, а другой (правый) короче.

Было установлено, что эта асимметричность продолжается и в ответвлениях бронхов, во всех более мелких дыхательных путях. 6 П ричем соотношение длины коротких и длинных бронхов также составляет золотое сечение и равно 1:1,618.

Строение золотого ортогонального четырехугольника и спирали.

Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

В геометрии прямоугольник с таким отношением сторон стали называть золотым прямоугольником. Его длинные стороны соотносятся с короткими сторонами в соотношении 1,168 : 1.

Золотой прямоугольник также обладает многими удивительными свойствами. Золотой прямоугольник обладает многими необычными свойствами. Отрезав от золотого прямоугольника квадрат, сторона которого равна меньшей стороне прямоугольника, мы снова получим золотой прямоугольник меньших размеров. Этот процесс можно продолжать до бесконечности. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие золотые прямоугольники. Причем располагаться они будут по логарифмической спирали, имеющей важное значение в математических моделях природных объектов (например, раковинах улиток).

Полюс спирали лежит на пересечении диагоналей начального прямоугольника и первого отрезаемого вертикального. Причем, диагонали всех последующих уменьшающихся золотых прямоугольников лежат на этих диагоналях. Разумеется, есть и золотой треугольник.

Английский дизайнер и эстетик Уильям Чарлтон констатировал, что люди считают спиралевидные формы приятными на вид и используют их вот уже тысячелетия, объяснив это так: "Нам приятен вид спирали, потому что визуально мы с легкостью можем рассматривать ее." 7


Лежащее в основе строения спирали правило золотого сечения встречается в природе очень часто в бесподобных по красоте творениях. Самые наглядные примеры - спиралевидную форму можно увидеть и в расположении семян подсолнечника, и в шишках сосны, в ананасах, кактусах, строении лепестков роз и т.д.

Ботаники установили, что в расположении листьев на ветке, семян подсолнечника или шишек сосны со всей очевидность проявляется ряд Фибоначчи , а стало быть, проявляется закон золотого сечения .

Всевышний Господь каждому Своему творению установил особую меру и придал соразмерность, что подтверждается на примерах, встречающихся в природе. Можно привести великое множество примеров, когда процесс роста живых организмов происходит в строгом соответствии с формой логарифмической спирали.


Все пружинки в спирали имеют одинаковую форму. Математики установили, что даже при увеличении размеров пружинок форма спирали остается неизменной. В математике нет более иной формы, которая обладала бы такими же уникальными свойствами как спираль. 8

Строение морских раковин

Ученые, изучавшие внутреннее и внешнее строение раковин мягкотелых моллюсков, обитающих на дне морей, констатировали:

"Внутренняя поверхность раковин безупречно гладкая, а внешняя вся покрыта шероховатостями, неровностями. Моллюск был в раковине и для этого внутренняя поверхность раковины должна была быть безупречно гладкой. Внешние углы-изгибы раковины увеличивают ее крепость, твердость и таким образом повышают ее прочность. Совершенство и поразительная разумность строения ракушки (улитки) восхищает. Спиральная идея раковин является совершенной геометрической формой и удивительна по своей отточенной красоте." 9

У большинства улиток, которые обладают раковинами, раковина растет в форме логарифмической спирали. Однако нет сомнения, что эти неразумные существа не имеют представления не только о логарифмической спирали, но не обладают даже простейшими математическими знаниями, чтобы самим создать себе спиралевидную раковину.

Но тогда как же эти неразумные существа смогли определить и избрать для себя идеальную форму роста и существования в виде спиральной раковины? Могли ли эти живые существа, которых ученых мир называет примитивными формами жизни, рассчитать, что идеальной для их существования будет логарифмическая форму ракушки?

Конечно же нет, потому что такой замысел невозможно осуществить без наличия разума и знаний. Но таковым разумом не обладают ни примитивные моллюски, ни бессознательная природа, которую, правда, некоторые ученые называют создательницей жизни на земле(?!)

Пытаться объяснить происхождение подобной даже самой примитивной формы жизни случайным стечением неких природных обстоятельств по меньшей мере абсурдно. Совершенно ясно, что этот проект является осознанным творением. И это творение принадлежит Аллаху - Господу миров:

"…Господь мой безграничным знанием Своим все объемлет. Ужель опять не поразмыслить вам об этом?" (Сура "Аль Ана`а м", 6:80)

Биолог Сэр Д`а рки Томпсон этот вид роста морских раковин называет "форма роста гномов". Сэр Томпсон делает такой комментарий:

"Нет более простой системы, чем рост морских ракушек, которые растут и расширяются соразмерно, сохраняя ту же форму. Раковина, что самое удивительное, растет, но никогда не меняет формы." 10

Наутилус, размером в несколько сантиметров в диаметре, представляет собой самый выразительный пример гномового вида роста. С.Моррисон так описывает этот процесс роста наутилуса, спланировать который даже человеческим разумом представляется довольно сложным:

"Внутри раковины наутилуса есть множество отделов-комнат с перегородками из перламутра, причем сама раковина внутри представляет собой спираль, расширяющуюся от центра. По мере роста наутилуса в передней части ракушки нарастает еще одна комнатка, но уже больших размеров, чем предыдущая, а перегородки оставшейся позади комнатки покрываются слоем перламутра. Таким образом, спираль все время пропорционально расширяется." 11

Приведем лишь некоторые типы спиралевидных раковин имеющих логарифмическую форму роста в соответствии с их научными названиями:
Haliotis Parvus, Dolium Perdix, Murex, Fusus Antiquus, Scalari Pretiosa, Solarium Trochleare.

Все обнаруженные ископаемые останки раковин также имели развитую спиральную форму.

Однако логарифмическая форма роста встречается в животном мире не только у моллюсков. Рога антилоп, диких козлов, баранов и прочих подобных животных также развиваются в виде спирали по законам золотой пропорции. 12

Золотое сечение в ухе человека

Во внутреннем ухе человека имеется орган Cochlea ("Улитка"), который исполняет функцию передачи звуковой вибрации. Эта костевидная структура наполнена жидкостью и также сотворена в форме улитки, содержащую в себе стабильную логарифмическую форму спирали = 73º 43’.

Рога и бивни животных, развивающиеся в форме спирали.

Бивни слонов и вымерших мамонтов, когти львов и клювы попугаев являют собой логарифмические формы и напоминают форму оси, склонной обратиться в спираль. Пауки всегда плетут свои паутины в виде логарифмической спирали. Строение таких микроорганизмов, как планктоны (виды globigerinae, planorbis, vortex, terebra, turitellae и trochida) также имеют форму спирали.

Золотое сечение в строении микромиров

Геометрические фигуры не ограничиваются только лишь треугольником, квадратом, пяти- или шестиугольником. Если соединить эти фигуры различным образом между собой, то мы получим новые трехмерные геометрические фигуры. Примерами этому служат такие фигуры как куб или пирамида. Однако кроме них существуют также другие трехмерные фигуры, с которыми нам не приходилось встречаться в повседневной жизни, и названия которых мы слышим, возможно, впервые. Среди таких трехмерных фигур можно назвать тетраэдр (правильная четырехсторонняя фигура), октаэдр, додекаэдр, икосаэдр и т.п. Додекаэдр состоит из 13-ти пятиугольников, икосаэдр из 20-и треугольников. Математики отмечают, что эти фигуры математически очень легко трансформируются, и трансформация их происходит в соответствии с формулой логарифмической спирали золотого сечения.

В микромире трехмерные логарифмические формы, построенные по золотым пропорциям, распространены повсеместно. К примеру, многие вирусы имеют трехмерную геометрическую форму икосаэдра. Пожалуй, самый известный из таких вирусов - вирус Adeno. Белковая оболочка вируса Адено формируется из 252 единиц белковых клеток, расположенных в определенной последовательности. В каждом углу икосаэдра расположены по 12 единиц белковых клеток в форме пятиугольной призмы и из этих углов простираются шипообразные структуры.

Впервые золотое сечение в строении вирусов обнаружили в 1950-хх гг. ученые из Лондонского Биркбекского Колледжа А.Клуг и Д.Каспар. 13 Первым логарифмическую форму явил в себе вирус Polyo. Форма этого вируса оказалась аналогичной с формой вируса Rhino 14.

Возникает вопрос, каким образом вирусы образуют столь сложные трехмерные формы, устройство которых содержит в себе золотое сечение, которые даже нашим человеческим умом сконструировать довольно сложно? Первооткрыватель этих форм вирусов, вирусолог А.Клуг дает такой комментарий:

"Доктор Каспар и я показали, что для сферической оболочки вируса самой оптимальной формой является симметрия типа формы икосаэдра. Такой порядок сводит к минимуму число связующих элементов… Большая часть геодезических полусферических кубов Букминстера Фуллера построены по аналогичному геометрическому принципу. 14 Монтаж таких кубов требует чрезвычайно точной и подробной схемы-разъяснения. Тогда как бессознательные вирусы сами сооружают себе столь сложную оболочку из эластичных, гибких белковых клеточных единиц." 15

Древних греков, художников эпохи Возрождения, астрономов XVII века и архитекторов XXI века объединяло то, что все они использовали золотое сечение , иначе известное как золотая пропорция .

Это число Phi — 1.61803399 — обладает действительно уникальными математическими свойствами, проявляется повсюду в природе, благодаря его использованию художники могут создать идеальные по композиции произведения.

Согласно астрофизику Марио Ливи, некоторые из величайших математиков всех эпох: Пифагор и Евклид в Древней Греции, итальянский математик Леонардо Пизанский в Средневековье и астроном Иоганн Кеплер в эпоху Ренессанса, а также современный учёный, физик Роджер Пенроуз из Оксфорда, провели бесконечно много времени, размышляя над этим особым числом и изучая его свойства. Не только математики увлекались золотым сечением.

Биологи, художники, музыканты, историки, архитекторы, психологи и даже мистики обсуждают причину его вездесущности и привлекательности. Можно с уверенностью сказать, что золотое сечение вдохновило мыслителей всех дисциплин, как никакое другое число в истории математики.

В математике и искусстве золотая пропорция проявляется тогда, когда отношение суммы двух величин к большей из них равно отношению большей величины к меньшей. Когда Золотое сечение осмысляется в двух измерениях, оно, как правило, представлено в виде спирали, которая определяется с помощью серии квадратов и дуг, образующих «золотые прямоугольники».

Спиральная форма выражает динамику роста растений и других природных объектов, золотая пропорция проявляется и в строении человеческого тела. Таким образом, это особое соотношение простых спиралей и прямоугольников свидетельствует о присутствии универсального порядка, лежащего в основе мира, поэтому оно было названо золотым или божественным.

Золотое сечение в истории

Золотое сечение очаровывало западных интеллектуалов, по крайней мере, 2400 лет. Самые ранние известные памятники — статуи и храм Парфенона в Греции (490-430 гг. до н.э.) были построены в соответствии с золотой пропорцией.

Тем не менее, многие утверждают, что она была известна гораздо раньше и что египтяне хорошо разбирались в свойствах этого уникального числа.

По мнению некоторых историков, египтяне считали золотое сечение священным. Они использовали золотое сечение при создании храмов и мест захоронения. Кроме того, египтяне обнаружили, что всё, соответствующее золотому сечению, приятно для глаз. Они использовали его в своей системе письменности и проектировании.

Греческий математик Евклид (ок. 365 - 300 до н. э.), описал то, что он назвал «уникальной средней пропорцией». Тем не менее, золотое сечение стало популярным только в XV веке, когда эстетика стала жизненно важным компонентом жизни в эпоху Возрождения, а искусство и геометрия служили и практическим, и символическим целям.

Известный математик, астроном, астролог Иоганн Кеплер (1571 - 1630 гг.) писал: «В геометрии существуют два сокровища: теорема Пифагора и среднее соотношение; первую мы можем сравнить с мерой золота, второе можно назвать драгоценным камнем».

Золотое сечение в архитектуре

Многие художники и архитекторы создавали свои творения в соответствии с золотой пропорцией в надежде получить лучшие результаты с точки зрения эстетики. Используя любое из золотых соотношений, архитектор может создать дверную ручку, соответствующую двери, которая в свою очередь имеет аналогичное соотношение со стенами и всем помещением в целом, и так далее.

Но более всего золотое сечение проявлено в фасаде зданий-шедевров архитектуры: от Парфенона до Великой мечети Кайруана, от Сиднейского оперного театра до Национальной галереи в Лондоне.

Золотое сечение в природе

Самым удивительным в золотом сечении является то, что оно может рассматриваться как естественное явление в природе. Золотое сечение выражается в расположении ветвей вдоль стволов деревьев, прожилок в листьях. Его можно увидеть в строении скелетов животных и людей, в разветвлении их вен и нервов.

Оно даже может быть замечено в пропорции химических соединений и геометрии кристаллов. По сути, оно вокруг и внутри нас, и по этой причине немецкий психолог Адольф Цейзинг (1810 - 1876 гг.) назвал его «универсальным законом, в котором содержится основной принцип формирования всего, стремление к красоте и полноте в природе и искусстве, который пронизывает, как первостепенный духовный идеал, все структуры, формы и пропорции, будь то космические или индивидуальные, органические или неорганические, акустические или оптические; который полностью реализован в теле человека».

Благодаря уникальным свойствам золотого сечения многие считают его священным или божественным, позволяющим обрести более глубокое понимание красоты и духовности в жизни, увидеть скрытую гармонию и связность во всём, что нас окружает.

Когда смотрим на красивый пейзаж, мы охватываемых все вокруг. Потом уделяем внимание деталям. Речке журчащей или дереву величественному. Видим поле зеленое. Замечаем, как ветер его обнимает нежно и журя шатает со стороны в сторону траву. Можем почувствовать аромат природы и услышать пение птиц…Все гармонично, все взаимосвязано и даёт чувство умиротворения, чувство прекрасного. Восприятие идёт поэтапно чуть меньшими долями.Куда вы сядете на скамье: на край, на середину или в любое место? Большинство ответит, что чуть дальше от середины. Приблизительное число в пропорции скамьи от вашего тела до края будет 1,62. Так и в кинотеатре, в библиотеке,- везде. Инстинктивно создаём гармонию красоту, которую во всем мире называю “Золотым сечением”.

Золотое сечение в математике

Вы задумывались, можно ли определить меру красоте? Оказывается, с математической точки зрения возможно. Простая арифметика даёт понятие об абсолютной гармонии, которая и отображается в безупречной красоте, благодаря принципу Золотого сечения. Архитектурные сооружения др. Египта и Вавилона первыми начали соответствовать данному принципу. Но сформулировал принцип первым Пифагор. В математике это деление отрезка чуть больше половины, а точнее 1,628. Данное соотношение представляется как φ =0,618= 5/8. Маленький отрезок = 0,382 = 3/8, а полностью отрезок принимаем за единицу.

А:B=B:C и C:B=B:A

От принципа золотого сечения отталкивались и великие писатели, архитекторы, скульпторы, музыканты, – люди искусства, и христиане, рисующие пиктограммы (пятиконечные звезды и т.д.) с его элементами в храмах, спасаясь от нечисти, и люди, изучающие точные науки, решающая проблемы кибернетики.

Золотое сечение в природе и явлениях.

Все на земле приобретая форму растет вверх, в сторону или по спирали. Последнему пристально уделил внимание Архимед, составив уравнение. По ряду Фибоначчи устроена шишка, ракушка, ананас, подсолнух, ураган, паутина, молекула ДНК, яйцо, стрекоза, ящерица…

Тицириус доказал, что вся наша Вселенная, космос, галактическое пространство, – все спланировано исходя из Золотого принципа. Абсолютно во всем живом и не живом можно прочесть высшую красоту.

Золотое сечение в человеке.

Кости продуманы природой тоже согласно пропорции 5 /8 . Это и исключает оговорки людей про “кости широкие “. Большинство частей тела в соотношениях применяются к уравнению . Если все частички тела подчиняются Золотой формуле , тогда внешние данные будут весьма привлекательны и идеально сложены .

Отрезок от плеч до верха головы и ее размера = 1 :1 .618
Отрезок от пупа до верха головы и от плеч до верха головы = 1 :1 .618
Отрезок от пупа до коленок и от них до ступней ног = 1 :1 .618
Отрезок от подбородка до крайней точки верхней губы и от неё до носа = 1 :1 .618


Все
расстояния лица дают общее представление об идеальных пропорциях , привлекающих взгляд .
Пальцы , ладонь , тоже подчиняются закону . Необходимо ещё отметить , что отрезок расставленных рук с туловищем равен росту человека . Да что там , все органы , кровь , молекулы , соответствуют Золотой формуле . Истинная гармония внутри и снаружи нашего пространства .

Параметры с физической стороны окружающих факторов.

Громкость звука. Высшая точка звука, вызывающая не комфортное ощущение и боль в ушной раковине = 130 децибелам. Это число можно разделить пропорцией 1,618, тогда выходит, что звук человеческого крика будет = 80 децибел.
Тем же методом двигаясь дальше получаем 50 децибел, что характерно для нормальной громкости речи человека. И последний звук, который получим благодаря формуле – приятный звук шепота = 2,618.
По данному принципу можно определить оптимально-комфортное, минимальное и максимальное число температуры, давления, влажности. Простая арифметика гармонии заложена во всем нашем окружении.

Золотое сечение в искусстве.

В архитектуре самые известные здания и сооружения: египетские пирамиды, пирамиды Майя в Мексике, Нотр-дам де Пари, Парфенон греческий, Петровский дворец, и другие.

В музыке: Аренский, Бетховен, Гаван, Моцарт, Шопен, Шуберт, и другие.

В живописи: почти все картины знаменитых художников написаны согласно сечению: разносторонний Леонардо да Винчи и неподражаемый Микеланджело, такие родные в писании Шишкин с Суриковым, идеал чистейшего художества – испанец Рафаэль, и подаривший идеал женской красоты – итальянец Боттичелли, и многие-многие другие.

В поэзии: упорядоченная речь Александра Сергеевича Пушкина, в особенности “Евгений Онегин” и стихотворение “Сапожник”, поэзия замечательных Шота Руставели и Лермонтова, и многих других великих мастеров слова.

В скульптуре: статуя Аполлона Бельведерского, Зевса Олимпийского, прекрасной Афины и грациозной Нефертити, и другие скульптуры и статуи.

В фотографии используется “правило третьей”. Принцип такой: композиция делится на 3 равные части по вертикали и по горизонтали, ключевые моменты располагаются либо на линиях пересечения (горизонт), либо в точках пересечений (объекте). Таким образом пропорции равны 3/8 и 5/8.
В согласно Золотого сечения имеется много уловок, которые стоит разобрать детально. Их опишу подробно в следующей .

Занятие 4.

«Золотая» пропорция в природе

Цель: познакомить учащихся с золотой пропорцией и связан­ных с нею соотношений, наблюдаемых в живой природе.

I. Проверка домашнего задания.

П. Лекция.

«Золотое» сечение - один из основополагающих принципов природы.

Красота природных форм рождается во взаимодействии двух физических сил - тяготения и инерции. Золотая пропорция - символ этого взаимодействия, поскольку диктуемое ею отношение большей части целого к самому целому выражает основные моменты живого роста: стремительный рост побега до зрелости и замедленный рост до момента цветения, когда достигшее полной силы растение готовится дать жизнь новому побегу.

Одним из первых проявление золотого сечения в природе подметил немецкий математик и астроном Иоганн Кеплер (1570- 1630 гг.). С XVII в. наблюдения математических закономерностей в ботанике и зоологии стали быстро накапливаться.

Приведем один из сравнительно недавно установленных фактов. В 1850 г. немецкий ученый А. Цейзинг открыл так называемый закон углов, согласно которому средняя величина углового отклонения ветки растения равна примерно 138°.

Представим себе, что две соседние ветки растения исходят из одной точки (на самом деле это не так: в реальности ветви располагаются выше или ниже друг друга). Обозначим одну из них через OA, другую через ОВ. Угол между лучами - ветками обозначим через a, а угол, дополняющий его до 360°, - через b.

Составим золотую пропорцию деления полного угла, считая, что угол b – большая часть этой величины.

Получаем квадратное уравнение:

Положительный корень

https://pandia.ru/text/78/527/images/image006_50.gif" width="16" height="44"> показывает, что один цикл спирали трижды огибает стебель, и что в одном цикле 8 листьев. Эта же самая дробь выражает и угол рас­хождения двух соседних листьев..gif" width="16" height="44"> и выражают, в сущности, одно и то же листорасположение, так как угол, равный окружности, дополняет до 360° угол, соответствующий https://pandia.ru/text/78/527/images/image008_36.gif" width="35" height="41">; ; …

Ученые заметили, что этот ряд отличается одной любопытной и довольно неожиданной особенностью, а именно, что каждая из этих дробей, начиная с третьей, получается из двух предыдущих путем сложения их числителей и знаменателей.

Числители и знаменатели дробей дают известный ряд Фибоначчи:

1, 1, 2, 3; 5, 8, 13;... и 2; 3; 5; 8, 13, 21. в котором любая пара соседних чисел удовлетворяет одному из уравнений:

и

где большим числом является х :, меньшим у . Все эти дроби дают нам довольно точные приближения к числу 0,62.

Рассмотрим теперь расположение семечек в корзинке подсолнуха. Они выстраиваются вдоль спиралей, которые закручиваются как слева направо, так и справа налево. В одну сторону закручено 13 спиралей, в другую – 21.

В более крупных соцветиях подсолнечника число соответствующих спиралей – 21 и 34, или 34 и 55. Похожее спиральное расположение наблюдается у чешуек сосновых шишек, или ячеек ананаса. В верхушках очень многих побегов можно различить такие же системы спиральных рядов.

Число рядов листьев или цветков, ориентированных противоположно, отличается у разных растений, но чаще всего принимают следующие значения (в числителе записано число длинных рядов, в знаменателе – коротких).

; https://pandia.ru/text/78/527/images/image015_21.gif" width="51" height="41 src=">.gif" width="73 height=41" height="41">.gif" width="104" height="41 src=">

;

Начиная со второго члена этого ряда, в нем повторяется число j, с каждым новым шагом выражаемое все более точно: j = 0,618033...

IV. Закрепление.

Задача 3 .

V. Подведение итогов.

Домашнее задание: работа над сообщениями, докладами, проектами.

Занятие 5.

«Золотая» пропорция в жмвой природе

(семинар)

Цель: продемонстрировать разнообразие применения золотого сечения и связанные с ним соотношения в реальной жизни.

«Золотая» пропорция человеческого тела (беседа)

То, что части красиво сложенного человеческого тела находятся в определенной пропорции, знает каждый: недаром мы говорим о пропорционально сложенной фигуре. Но далеко не всем известно, что здесь имеет место золотое деление. Лучшим примером того, что древние ваятели использовали этот принцип при изображении человеческого тела, являются античные статуи. Идеально сложенное человеческое тело полностью отвечает этому принципу. Если высоту хорошо сложенной фигуры разделить в крайнем и среднем отношении, то линия раздела окажется на высоте талии. Особенно хорошо удовлетворяет этому закону мужская фигура. Любая античная скульптура отвечает закону золотой пропорции. Каждую отдельно взятую часть тела (голову, руку, кисть) также можно разделить на естественные части по закону золотого сечения.

Рука согласно принципу «золотого» сечения распадается на «свои анатомические части» – плечо, предплечье, кисть.

Разделение кисти руки, лица отвечает тоже этому принципу.

Представление и обсуждение сообщений, докладов, рефератов.

Предлагаемые темы:

1. «Золотые» спирали в природе.

2. Молекулярные тайны жизни и «золотое» сечение.

3. «Золотая» пропорция в химии.

4. Ритмы (симфония) Земли.

5. Ритмы сердца и мозга.

Что еще почитать